The Resus Tracks 05: Kenny (@heart_lung) Tackles Shock Perfusion! #FOAMed, #FOAMcc, #FOAMus

So finally got around to corralling Physiology Jedi Master Jon-Emile Kenny for a chat, which is always a tremendous learning opportunity. And this time was no different. Jon breaks down some of the mysteries around arteriolo-capillary coupling and shock flow, and brings up some really interesting potential uses of the critical collapse pressure of small arterioles, and hints at how we may be able to use some POCUS techniques to clinically assess tissue perfusion.

Here you go:

Please leave comments and questions!

The article we refer in the beginning to is here:

MAP in sepsis review

And the article on critical closing pressure in the neurocirculation that Jon refers to is here:

CrCP Brain

cheers!

 

Philippe

3 thoughts on “The Resus Tracks 05: Kenny (@heart_lung) Tackles Shock Perfusion! #FOAMed, #FOAMcc, #FOAMus

  1. HI Phillipe – I can’t get it to run….

  2. Thanks for letting me talk. I think one way to think of it is by an example. Imagine 3 patient’s MAPs are 55 mmHg. You start or increase the norepi dose. You could have three different responses as you interrogate the renal artery with quantitative Doppler:

    patient 1: MAP increases to 65 mmHg, and renal artery end-diastolic velocity drops from 30 cm/s to 15 cm/s
    patient 2: MAP increases to 65 mmHg and renal artery end-diastolic velocity remains unchanged.
    patient 3: MAP increases to 65 mmHg and renal artery EDV rises from 10 cm/s to 25 cm/s

    in the first situation, you are probably raising the critical closing pressure [i know i kept saying collapse in the recording] relative to the MAP. the pressure gradient falls and therefore velocity falls at end diastole. one would also expect flow to fall in this case, if you did VTI and calculated area of renal artery. in this situation you are raising arteriolar pressure, but primarily by constriction of downstream vessels and perfusion may be impaired. ***the effects on GFR are complicated and would depend on relative afferent versus efferent constriction***

    in the second situation, you have raised MAP, and probably not changed the closing pressure because the velocity at the end of diastole is the same. if you look at figure 2 in the paper linked to above, you can see that increasing *flow* to the arterioles will increase MAP relative to the Pcc [closing pressure]. the increase in flow raises the volume of the arteriole which [as a funciton of arteriolar compliance] increases the pressure without changing the downstream resistance. increasing flow could be from beta-effects on the heart, or increased venous return from NE effects on the venous side activating the starling mechanism. another mechanism to increase flow and therefore arteriolar pressure relative to the closing pressure is the provision of IV fluids.

    in the third situation, MAP rises, and EDV rises which suggests that the closing pressure has also fallen – thus the gradient from MAP to closing pressure rises throughout the cycle. how might this happen? its possible that raising the MAP decreases stimulus for renin release in afferent arteriole, less renin leads to less angiotensin and less efferent constriction. thus, paradoxically, the closing pressure falls with NE! another possibility is opening shunts between afferent and efferent arterioles [per Bellomo]. as above ***the effects on GFR are complicated and would depend on relative afferent versus efferent resistance changes***

Leave a Reply to thinkingcriticalcare Cancel reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.