Genomics & Preventive Medicine: The Next Level. #FOAMed

So, on a totally different note that has little to do with my usual rants about bedside ultrasound, resuscitation and critical care, I wanted to share with everyone an interesting project I’m involved in which really applies not only to prevention and early diagnosis, but even to the care of the acutely ill, and this is genomics.

To us physicians in the trenches, mutations are generally clinically relevant in certain limited settings, such as thrombosis (factor V et al, ), cancers (BRCA1, etc), but not really in our day-to-day. However, in the next decade, this will probably change quite a bit. The human genome project not turbocharged by crisper technology has resulted in an exponential increase in research and discovery of genetic mutations, disorders and, around the corner, gene therapy.

 

So in the last year we’ve put together a team, developed and designed a process by which an individual can get his entire genome sequenced, then ran against the current crop of known and significant mutations. We have a team of genetic counselors that will ensure follow-up of anything found. Additionally, genomes will be re-run on a yearly basis against any newly discovered significances.

So, what does this mean clinically? Well, I won’t bore everyone with a mutation-by-mutation breakdown of what could be done, but I think everyone understands the advantage of knowing specific disease propensity and having a heads-up for the development of certain associated pathologies. If I had factor V leiden, I might be tempted to take a couple aspirins before boarding and make sure I walk the aisles regularly in my trans-pacific flight, or if I have the philadelphia chromosome, I might get a cbc when my cold/flu lasts more than a couple days…

To get a little more perspective, here is a recent article by the American College of Medical Genetics that may help see the possibilities:

ACMG Article

So I’m really quite excited by this development, and I think it can have quite an impact. For the moment, there are costs involved, but as we are clinician group and not a corporate machine, we are keeping these as low as possible. For anyone interested, for themselves, their practice or their patients, or just have some questions, please get in touch! We have just opened up the “door” in Montreal and are starting up in Toronto shortly.

The real value to this organization is a turn-key solution to genetic testing and follow-up, unlike any other out there, none of which are MD-run nor involve genetic counselors and association to specific clinics and medical follow-up, in addition to the updating of the patient’s variants against new discoveries and treatments.

This is the cutting edge. That’s why I like it!

See below for some more details:

cheers

 

Philippe

Wicked Clinical Case: POCUS & Prone save the day! #FOAMed, #FOAMcc, #FOAMer

So I get a call from a colleague in the ED at about 2am, telling me about a 39 yr old woman post-arrest. So I start putting on my boots and warming up the car (it’s January in Montreal folks).  Apparently she had presented earlier in severe acidosis, the diagnosis is unclear, but she apparently got 2 units for an Hb of 49, then went into respiratory failure and got intubated. She arrested about 30 minutes later, cause unknown.

I tell the ICU to prepare a bed but I want to see her in the ED first. Twenty minutes later I put probe to patient and see a full IVC with spontaneous echo contrast. On that I tell the nurse to hold the fluids – there was a bag and tubing and a pump with 100ml/hr on it – and turn into a subxiphoid view to see a normal RV and a hypokinetic LV with some WMAs. She has marked consolidations  in both posterior lung fields and B lines laterally, with small effusions and dynamic air bronchograms (indicating patent airways). At this point she has a HR of about 120, but there is neither perceptible BP (by NIBP) nor saturation. She’s on levophed at 20mcg. She’s about an hour post arrest which was witnessed and brief (<10min to ROSC).

The theories about the arrest are possible hyperkalemia: she was intubated with succinylcholine before the K of 6.1 was back from the lab, and her pre-intubation pH was 7.0, and post-intubation she was only ventilated at 400 x 18, possibly precipitating a drop in pH and a rise in K. Her EKG had some nonspecific signs at this point, but also a poor anterior R wave.

So we head to the ICU, as instrumentation was needed. Cerebral saturation (SctO2) is 42% and ETCO2 is 20mmhg, which reassures me that the BP is probably in the measurable range (normal SctO2 is >60% and varies, but 47% is certainly viable)…  A jugular CVC with continuous ScVo2 and a femoral arterial line goes in:

screen-shot-2017-01-05-at-10-44-50-pm

So with a BP of 59/44 (ignore the 100/46, not sure whose arm that was on!) I start epinephrine, as the POCUS is similar, as I want some added beta-agonism. ScVO2 matches SctO2 in the 40’s. We get the BP up the the 90-1oo range, the ETCO2 goes to 30, the SctO2 and ScVo2 go up into the high 40’s, which is very reassuring, because with this I know that my epi drip is improving perfusion and NOT over-vasoconstricting. Without looking at a real-time tissue perfusion index of some sort or other, it is nearly impossible to know rapidly whether your therapy is helping or harming (will discuss tissue saturation & resuscitation monitoring in more detail in another post sometime soon).

screen-shot-2017-01-05-at-10-46-31-pm

So now the sat finally starts to record in the low 60’s. We have a PEEP of 5, so start bringing it up. We hit 16 before the BP starts to drop, and that only gets us to the mid 70’s sat%. She actually squeezes my hand to command.

screen-shot-2017-01-05-at-10-45-21-pm

At this point I take a few seconds to recap in my mind. I’d spoken to the husband briefly and she had had recurrent episodes of feeling unwell with headache, nausea and diaphoresis, and that had been out for dinner earlier and she felt fine until later in the evening when this came on and eventually brought her to hospital. There was also a notion of hypertension at an ER visit a couple of weeks ago. Her history was otherwise not significant. Nonsmoker.

Pheo? Maybe, but shock?  I repeat the EKG, and now, in I and AVL, there is perhaps a 1mm ST elevation. She’s 39 and essentially dying. Lactate comes back >15, pH 6.9.  I give her a few more amps of NaHCO3. You can see the BP respond to each amp. I decide we need to go to the cath lab and get the cardiologist on call to get on the horn with the interventional team at a nearby hospital with a cath lab and ECMO, which is what I think she needs. Hb comes back at 116, making that initial 49 that prompted 2 PRBCs probably a technical or lab error…very unfortunate. There are no visible signs of significant bleeding.

But back to the patient, because this isn’t really a transferrable case.

Recap: a 39yr old woman in cardiogenic shock AND in severe congestive heart failure exacerbated by fluids and packed red cells, with a PO2 in the 40’s and sat in the 70’s.

So I decide to prone her.

screen-shot-2017-01-05-at-10-47-44-pm

Along with draining tamponades, this had to be one of the most rapid and rewarding maneuvers I’ve done. There was a scry drop of sat to the 40’s for a few seconds (may have been a technical thing), but then within a few minutes: BP to the 130’s, SctO2 to 59% and sat 100%!

screen-shot-2017-01-05-at-10-46-46-pmscreen-shot-2017-01-05-at-10-47-31-pm

screen-shot-2017-01-06-at-12-08-05-am

 

We dropped the vasopressors, the FiO2, and all breathed a collective sigh of relief. Now for the novices out there, prone ventilation improves VQ mismatch by moving perfusion from diseased, posterior lung fields to now-dependant, relatively healthy, anterior lung fields.

So transfer at this point was in the works. I planned to leave her prone until the last minute. The miraculous effect started to slowly wane within about 30 minutes, with sat and BP creeping down. At the time of transfer, we were back up to 80% FiO2.

So why is this?  Simple enough, this being simple pulmonary edema – rather than consolidated pneumonia – it migrated to dependent areas  relatively quickly. This was confirmed by a quick POCUS check:screen-shot-2017-01-05-at-10-48-06-pmscreen-shot-2017-01-05-at-10-48-26-pm

So in the still shots, you see a pristine “A” profile (normal, no edema) from the patient’s back, and a severe consolidation or “C” profile with ultrasound bronchograms in the antero-lateral (now dependant) chest. Impressive. (for those wanting some POCUS pearls see other posts and here). This is the reverse of her initial POCUS exam.

So we flipped her back and transported her – lights & sirens – the the cath lab, where they were waiting with ECMO cannulae. As an aside, it was quite refreshing to speak to the ICU fellow who spoke POCUS as well as french and english – it’s not usually the case, but I’m glad to see the change. I do believe it to be a direct effect of the influence of my friend and mentor, Dr. Andre Denault, one of the POCUS deities.

So she turned out to have a normal cath and a large adrenal mass. She did well on ECMO, being weaned off it today, and is now alpha-blocked and waiting for surgery, neurologically intact for all intents and purposes. A big thanks to the interventionists and the ICU team at the Montreal Heart Institute. Puts a smile on my face.

 

Take Home Points:

  1. don’t resuscitate without POCUS. I wouldn’t want anyone guessing with my life on the line, would you?
  2. keep pheo in mind as a cause of “acute MI” and shock
  3. if you’re not using some form of realtime monitor of perfusion (continuous CO, SctO2, ETCO2, ScvO2) then all you’ve got is looking at the skin and mentation, so you are essentially flying blind. Lactate and urine output are not realtime in real life.
  4. get ECMO in the house, it’ll come in handy. I’m working on it.

 

Love to hear some comments!

cheers

 

Philippe

 

ps I’ll try to add more ultrasound clips from this case in the next few days.

Inappropriate care in end of life – Let’s take a cold, hard look at it… #FOAMed, #FOAMcc

As part of a canadian medico-social group called the Idea Catalyst (www.ideacatalyst,ca), I wrote this little piece, which might be worth sharing:

In the ICU, I feel that what I do falls into three broad categories:

#1 good: thank goodness for modern medicine we have a chance to save this one.
#2 unclear but necessary – chances are so-so, but hey, sometimes they squeak by, and in truth, the system needs to practice for those in point #1.
#3 not good. I think I might have to one day answer to a higher power as to why I chose to use resources and skills to extend someone’s life by a few days or weeks at the cost of (a) his or her own suffering and (b) a huge societal cost with essentially no benefit other than the medical staff and the family being able to say ‘we tried everything.’ And while that may have some value in a utopian world, it simply isn’t fair to other patients and the next generation to squander our resources.

It is understandably difficult and unfair – for both the family and the health care providers – for the first encounter/discussion entering on the fact that we don’t feel we should be doing “everything” we can. It obviously doesn’t get the therapeutic alliance to a strong start unless they were already of that opinion. Having had the opportunity to work predominantly with a number of cultural groups with strong beliefs about end-of-life (e.g. do it all for as long as imaginably possible), I think this movement needs to start not at the entry to the ED, the ICU or the wards, but rather sometime in high school. Death needs to be de-taboo’d so that individuals get to express what their wishes are, and avoid unnecessary suffering themselves, but also to their families, who become wracked with guilt and, in many cases, take what is perceived as the guilt-free road of telling us to be aggressive in our care and interventions.

I can’t even tell you how many times I have heard “oh no, if it was me in that bed I wouldn’t want any of this, but I know he/she would, she really wants to live…” That’s fear and guilt talking.

I’ve long had the idea of doing a documentary on end of life, mixing social and medical data, and interviewing laypeople who have had experience in this – themselves as patients, as family members, etc, as well as health care workers at all levels. Just so anyone watching gets a good idea of what mechanical ventilation is, what CPR is, etc, what outcomes are at various ages, etc… This could be watched once or twice during high school, with the assignment of discussing and recording with parents and grandparents. There you go. Discussion has begun. I think we’d save millions with it. I’ve discussed it with a couple friends and colleagues, and hope sometime to make it a reality.

And I think if people start realizing that stretching out Grandpa Joe’s last days may cost little Johnny his free health care when he grows up.

Check out a great paper by my friend Marco:

Vergano Gristina futility 2014

Love to hear comments, naturally.

cheers!

Philippe

PS for you unfortunate readers south of the Canadian border, much of the social responsibility issue isn’t really an issue, when in a private system. It is, however, our reality and can’t be ignored.

Another wicked ultrasound case! Can you see the culprit? Another reason to do bedside ultrasound… #FOAMed, #FOAMcc, #FOAMus

Reviewing some TEE cases with Max Meineiri of TGH yesterday (Max is an anaesthetist-intensivist-sonographer extraordinaire who has been kind enough to help me brush up my TEE skills recently), here is one that stood out for two reasons. Here is the story: An 84 year old woman is sent from a peripheral hospital to the cath lab for chest pain.  She arrests on the table after they found normal coronaries and the code blue is called. Max arrives on the scene, and due to CPR making TTE difficult (and also because Max walks around with a TEE probe in a hip holster by Dolce & Gabbana), in goes the TEE probe and right away they note a massively dilated and hypokinetic RV, and a small and under filled LV. Yup, sure looks like a PE in these circumstances. Not being satisfied with a presumptive diagnosis, Max gets to a short axis view of the aortic valve and pulls out the probe slightly, following the bifurcation of the main PA.  On the screen, the right PA is on the upper left field, and the left PA disappears towards the upper right (the left main stem bronchus makes it difficult to visualize). Anything seem a little odd?   Yup, you can see the occlusive culprit a couple of centimetres into the right PA, moving with each beat.  Being in angio already, they threaded a PA cath and administered thrombolysis, but despite some visual fragmentation, she did not survive. So why is this case interesting? 1. the image is pretty cool. 2. More importantly, it highlights the importance of bedside ultrasound.  If a rapid, focused cardiac exam had been done at her presentation at the peripheral hospital, the first-line physicians most likely would have noted the severe RV dysfunction and questioned the diagnosis of coronary syndrome, possibly (hopefully) thrombolysing the patient, and very possibly averting the cardiac arrest. …I know, I know, we don’t have all the info, the ECGs, etc, and maybe this was really an ACS and she happened to have a DVT which embolized during transport, etc…do you buy that?  Ockham and his parsimonious razor don’t, and I would tend to side with them.   love to hear some thoughts!   Philippe

Bedside Ultrasound: Quite a Case! #FOAMed, #FOAMcc

So here is an awesome clip from an ICU colleague of mine, Lorraine Law.  She was managing a post arrest (elderly woman who collapsed at home and was resuscitated but remaining in profound shock) case using bedside ultrasound and came across this pathology:

video courtesy of Lorraine Law & Shirish Shantidatt

what do you think?

scroll below for my thoughts…

 

 

 

 

So the clip starts with a subxiphoid 4 chamber view that clearly shows a massively dilated RV with a hyperdynamic and underfilled LV.

[For the hemodynamic novices, remember that the ventricles are kind of like roommates who share a pericardium. Especially in acute scenarios, if one gets overloaded, the other will have to give way, until the pressure equilibrates. If the process is exceedingly slow, they can do some renovations and stretch the pericardium, but this takes likely weeks. In this case, the elevated PAP overloads the RV and the RVDP > LVDP, resulting in decreased diastolic filling, which in turn drops the stroke volume/cardiac output/MAP.]

We can see that the RV TAPSE (tricuspid valve excursion towards apex) is really minimal, supporting an acute or acute on chronic process.

The clip then shows a long axis view of the IVC with echogenic material, most likely thrombus, with a to and fro motion, going in and out of the RA. Wow. You don’t see this very often.  The only thing preventing further travel is actually the fact that the cardiac output is so low due to massive embolism so that the flow can in fact barely carry the clots forward anymore at this point, similar to the sluggish IVC clip I put up a few months ago (http://wp.me/p1avUV-5t).

The most likely diagnosis is pulmonary embolism, and thrombolysis is indicated. Unfortunately despite my colleague’s timely diagnosis, the clot burden was likely too much, and despite thrombolysis, the patient passed away of intractable shock.  One can imagine that the TPA actually has to make it to the lungs, and with such a degree of obstruction, it is likely that very little actually got to the pulmonary vasculature…

Unfortunate case, but quite impressive images.

A crazy thought, using hindsight and with the luxury of knowing the fatal prognosis: intracardiac (RV) TPA bolus? Small spinal needle?  Anyone bold enough? Food for thought if (when) I see one like this…

 

cheers!

 

Comments:

Marco says:

Really quite impressive images. A couple of weeks ago I admitted a pretty young patient after a successful resuscitation due to massive pulmonary embolism. Immediately after ROSC in emergency department, he was transported to the cath-lab where TPA bolus was administered directly through a PA cathether. In ICU we continued the infusion. In less than 24 hours we obtained a relative hemodynamic stability and discontinued all the vasopressors, but the case remains unfortunate because despite therapeutic hypothermia the post-anoxic damage was so severe that led to cerebral death declaration two days later.

 

Thanks Marco, very interesting.  There is a recent study on catheter directed thrombolysis in PE reviewed at PulmCCM:(http://pulmccm.org/main/2014/randomized-controlled-trials/catheter-directed-thrombolysis-submassive-pe-better-heparin-rct/)

A physiological point about PE resuscitation is the relative inefficiency of CPR, as both venous return and LV filling is severely limited, so systemic perfusion is even worse than the usually poor output during chest compressions…

Thanks for reading!

Marco replies:

Thanks, Philippe!
The point about the possible inefficiency of CPR is crucial in my opinion. The patient I brought as example had a witnessed cardiac arrest (he called EMS when in respiratory distress) and CPR without interruption from the beginning, nevertheless he resulted in brain death declaration.
I remember very clearly a 43-year-old woman that 3 years ago had a massive PE in the OR shortly after a long lumbar vertebral stabilization. We admitted her to ICU after more than 80 minutes of CPR, a bolus of rTPA and with severe hemodynamic instability. RV was extremely dilated. When she eventually regained stability I had little hope about her neurological recovery, but surprisingly she was extubated the following day and last year she returned to our 12-months post-ICU follow-up showing perfect recovery.
I think that systemic and cerebral perfusion during “obstructive” cardiac arrests such as massive PE is very difficult to asses with current technology. A couple of times I was tempted to check it with trans cranial doppler, but usually there’s too much confusion during CPR.
When I was a resident I witnessed to a iatrogenic cardiac arrest in a patient with advanced monitoring that led to an interesting publication: http://www.researchgate.net/publication/10832333_Cerebral_perfusion_pressure_and_cerebral_tissue_oxygen_tension_in_a_patient_during_cardiopulmonary_resuscitation

 

Wow, very interesting cases.  What fortune to have been able to record that data, as obviously getting that in during CPR would be almost impossible.  TCD, at least after ROSC, could be contributory… Another option is using NIRS, which I’ll be working with this summer.

thanks again!

Philippe

An Update on Pulmonary Embolism: NEJM’s PIETHO Study…what’s the verdict? #FOAMed, #FOAMcc

As has been discussed in a previous post (http://wp.me/p1avUV-7T), patients with sub-massive PE (hypoxic, tachycardic, some troponin rise, etc…but no hypotension) remain in a grey zone, which is, to me , a dubious situation at best – their mortality can be up to 15%, morbidity likely more.  Everyone agrees the low-risk patients don’t need thrombolysis, and everyone pretty much agrees that the patient in shock needs it.  There is data out there suggesting that some patients clearly benefit from thrombolysis despite not being in shock, in good part relating to avoiding chronic pulmonary hypertension and its consequences.

The issue for many clinicians is that they have a “stable” patient in front of them, and they are considering giving them a drug that can potentially give them a bleed in the head and leave them dead or crippled. Many shy away from this. Part of this is cultural, because the same docs probably wouldn’t hesitate giving the drug to a lateral or posterior MI, which is not likely to kill you, or even leave you a cardiac cripple (just to be clear, I’m not advocating against thrombolysis in these cases, just trying to find a parallel), but since the AHA guidelines say to do it and everyone else does it, there’s no trepidation. It is the standard of care.  For most of us acute care clinicians who do not do outpatient medicine, if the patient survives and gets discharged home, chalk one up in the win column. But, as has become clear in recent years with the post-critical illness syndromes, morbidity can be just as important as mortality, especially in the younger patients. Kline et al (Chest, 2009) showed how almost 50% of “submassive PE” patients treated with anticoagulation alone had dyspnea or exercise intolerance at 6 months. They only had a 15% improvement in their pulmonary artery pressures (mean 45 mmhg).

What are the real risks? Pooling the data together gives a value around 2% with a spread between 0.8% and 8%, more or less. This represents each patient’s inherent risk of bleeding, as well as some of the inconsistencies with post-thrombolysis anticoagulation (safest to aim for 1.5-2 x PTT baseline in the first 48h).

The MOPETT trial which, as a #FOAMite you have certainly come across, showed that a half-dose of TPA was highly effective, and they felt it might be possible to go lower. The physiological beauty in that is that, unlike other sites we thrombolyse with full dose TPA, the lungs get 100% of the TPA (coronary artery gets maybe 5%, brain gets 15%).  Mind you, of course, the culprit clot/artery obviously doesn’t get 100%, but much, much more (if we figure that you need about 50% vascular area occlusion to cause RV dysfunction) TPA per “clot” than other pathologies. One can argue that anatomically, there is a greater clot burden than coronary or arterial thrombolysis, which may offset this somewhat. However, the date was quite clear in this trial that the therapy was effective, and the bleeding was none.

Ok, so let’s get to the PIETHO. 1000 patients, TPA+heparin vs heparin alone in normotensive but intermediate risk patients. So, first question is how was that risk defined?  Patients needed to have echocardiographic/CT signs of RV dysfunction AND a positive troponin. Interestingly enough, onset of symptoms was up to 15 days before randomization…not exactly early treatment, and unfortunately there is no information about the actual time to thrombolysis or subgrouping.  The results were as one could imagine. The combined endpoint of death or hemodynamic decompensation was 2.6% in the thrombolytic group vs 5.6% in the anticoagulation.  I’m not a fan of combined endpoints. Hemorrhagic stroke was 2.0% vs 0.2%. Their conclusion? Exercise caution. Hmmm…not much of a step forward. Basically tells us what we know. It helps the hemodynamics, but you can bleed. They do re-affirm that bleeding is more likely in the over-75.

 

What do we REALLY need to figure out? 

1. echographic risk stratification – at least into moderate and severe RV dysfunction.

2. longer term outcomes (hopefully PIETHO has a follow-up study in the pipeline, since they had good numbers).

3. a point-of-care study – time is of the essence, and may have an impact on dosage. IMHO thrombolysis should be done within a few hours of presentation at most.

4. further dosage data – 1/2? 1/3? 1/4? small boluses q1h until RV function improves?

I wish I could do it, but community hospitals don’t have the ideal setup, nor do I have a research team that can handle something of this scale. But surely someone can!

 

Bottom line?

It won’t change my practice. I will continue to offer thrombolysis in select cases, especially the younger patients, who obviously have a lower risk of bleeding, and stand to benefit the most, as pulmonary hypertension  can be crippling. I know I’d take the risk of bleeding when I see 50% dyspnea/exercise intolerance two years down the road…

Finally, bedside ultrasound to anyone with dyspnea/hypoxia should be a standard of care for every acute care physician. No ifs, ands or buts, no exception. Waiting for a CT angio or formal (read daytime hours) echocardiogram is, to me, unacceptable. If you, a friend or family member were in that ER bed, would you trust a physical examination and a CXR to rule out the need for an immediate intervention? I wouldn’t, not my own, and not even Dr. Bates’, Dr. DeGowin’s or Dr. Sapira’s, or all three combined.

cheers!

 

 

 

Kline JA, Steuerwald MT, Marchick MR, Hernandez-Nino J, Rose GA. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest 2009;136:1202e1210.

Guy Meyer, M.D., Eric Vicaut, M.D., Thierry Danays, M.D., Giancarlo Agnelli, M.D., Cecilia Becattini, M.D., Jan Beyer-Westendorf, M.D., Erich Bluhmki, M.D., Ph.D., Helene Bouvaist, M.D., Benjamin Brenner, M.D., Francis Couturaud, M.D., Ph.D., Claudia Dellas, M.D., Klaus Empen, M.D., Ana Franca, M.D., Nazzareno Galiè, M.D., Annette Geibel, M.D., Samuel Z. Goldhaber, M.D., David Jimenez, M.D., Ph.D., Matija Kozak, M.D., Christian Kupatt, M.D., Nils Kucher, M.D., Irene M. Lang, M.D., Mareike Lankeit, M.D., Nicolas Meneveau, M.D., Ph.D., Gerard Pacouret, M.D., Massimiliano Palazzini, M.D., Antoniu Petris, M.D., Ph.D., Piotr Pruszczyk, M.D., Matteo Rugolotto, M.D., Aldo Salvi, M.D., Sebastian Schellong, M.D., Mustapha Sebbane, M.D., Bozena Sobkowicz, M.D., Branislav S. Stefanovic, M.D., Ph.D., Holger Thiele, M.D., Adam Torbicki, M.D., Franck Verschuren, M.D., Ph.D., and Stavros V. Konstantinides, M.D., for the PEITHO Investigators*, Fibrinolysis for Patients with Intermediate- Risk Pulmonary Embolism, N Engl J Med 2014;370:1402-11.

Mohsen Sharifi, MDa,b,*, Curt Bay, PhDb, Laura Skrocki, DOa, Farnoosh Rahimi, MDa, and Mahshid Mehdipour, DMDa,b, “MOPETT” Investigators, Moderate Pulmonary Embolism Treated With Thrombolysis (from the “MOPETT” Trial), Am J Cardiol 2012

Central line insertion: US-spotted “Blind” technique Video (HERE IT IS!) #FOAMed, #FOAMcc

My apologies, had technical issues with the video uploading so here it is in two formats:

 

 

 

…please let me know if there is a problem!

 

thanks

 

Philippe