Bedside Ultrasound Quiz Part 2: A 50 yr old man with dyspnea, acidosis, hepatitis and leg edema. #FOAMed, #FOAMer, #FOAMus

So I was glad to see some great answers on twitter about this case, so let me fill you guys in on the management and the details.

So my diagnosis was of a (likely viral) myocarditis as a subacute process over the last weeks, with a superimposed pneumonia causing the acute deterioration and presentation to ED.  I didn’t think that his elevated lactate represented shock, but rather a reflection of adrenergic activation and reduced hepatic clearance due to congestive hepatitis.  He also had congestive renal failure. Of course, the LV had a 4 x 2 cm apical thrombus, which is likely secondary to the dilated cardiomyopathy.

So the management was diuretics, antibiotics, and anticoagulation, which resulted in a gradual improvement of the respiratory status and renal/hepatic dysfunction. He had a coronary angiogram the day following admission which showed two 50% stenoses deemed to be innocent bystanders.

Bottom Line:

I think the learning point in this case is that, without POCUS, this could easily have been treated as severe sepsis with multiple organ failure (potentially rationalizing away the BP of 140 as a “relatively low” BP due to untreated hypertension), and as such, may have received fluids… Especially south of the border where they are mandated to give 30 cc/kg to anything deemed “septic.”  This would have been the polar opposite of the necessary treatment.

The scarier thought is that he may have then progressed to “ARDS,” been intubated and then the debate between keeping him dry and giving fluids for the kidneys may have ensued.  Though a formal echo likely would have been done, it may not have happened in the first 24-48 hours… If MSOF progressed and he succumbed, the rational may have been that he was “so sick,” and died despite “best care…”

The reality is that he is not yet out of the woods today, with an EF of 15% and afib, but he is off O2 and sitting up in a chair. Fingers crossed he falls in the group of those with myocarditis who improve…

Love to hear anyone’s thoughts!

 

Cheers

Philippe

Cerebral & Somatic NIRS (Near InfraRed Spectroscopy) in shock states: tailoring therapy. (PART 1) #FOAMed, #FOAMcc

So I’d mentioned using NIRS to monitor and tailor therapy a few months ago, and promised a more in-depth discussion to come, so here we go.

For this not familiar with the technology or the concept, NIRS measures tissue saturation, predominantly venous. Hence physiologically it is akin to central/mixed venous gases, but localized. Cerebral NIRS found its foothold in the OR with carotid and cardiac surgery, but its use is now expanding. Given typical knowledge translation time of a decade, it should end up joining ETCO2 as a routine vital in monitored units, but probably not soon enough.

So in our unit at Santa Cabrini Hospital in Montreal, we’ve had this technology for about a year (the INVOS system), and have been studying its uses. In this time, three applications have stood out:

  1. Finding the “Sweet Spot” for vasopressors.
  2. Confirmation that therapeutic interventions are hemodynamically appropriate.
  3. Cardiac arrest: CPR adequacy, prognostication and detecting ROSC.

 

  1. Finding the “Sweet Spot” – I think (hope) that anyone reading this with professional interest understands that pressure does not necessarily equal perfusion.  With that in mind, adjusting vasopressors to a pressure makes little sense, and represents at best a guesstimate of perfusion, which is what we really are after. We can all agree, however, that a certain minimum pressure is required, but whether that is 65, 55 or 45 MAP no one can say for sure.  So the way I like to use it is to establish a baseline and watch the direction of the tissue saturation with vasopressor therapy. If the saturation begins to drop off, we may have reached a point at which excessive vasoconstriction is worsening tissue perfusion, and that inflexion point may represent the upper beneficial limit of the vasopressor – this may happen to be under 60 or 65 of MAP.  However, it is key to understand that this inflexion point is reflective of the current state of hemodynamics, such that a change in volume status or cardiac output, in one direction or the other, would likely change the position of this physiological point.  For example,  a volume depleted patient may reach a decreasing tissue saturation point at 55 MAP, but, once volume replete, may reach a higher MAP of 65 or above before a drop in saturation is seen.  Conversely, a patient whose best tissue saturations were around 65 MAP who suffers an MI and sudden drop in cardiac output may now see his perfusion compromised at that same MAP, which would now be achieved with a greater vasoconstriction, less cardiac output and consequently, poorer flow… I posted a case discussion which illustrates this.
  2. Confirmation that therapeutic interventions are hemodynamically appropriate – I feel this is really important. When a patient’s life is literally on the line, and knowing that our interventions are seldom without potential nefarious side effects, it is poor medicine to be introducing a therapy without having some form of monitoring – preferably multiple – that we are headed in the right direction, or at least not making things worse. Of course, we already do this – with BP, sat, lactate, CCO, ultrasound, ETCO2 – but I think using a realtime measure of tissue saturation adds to this. It is also my firm opinion that integrated, multimodality monitoring is necessary – at least until someone develops some form of mitochondrial monitoring which tells us that the cytoenergetics are sufficient to survive. Until then we are stuck with surrogate markers and many of them (e.g. lactate) are the result of complex processes that preclude them being a simple indicator of perfusion adequacy. For instance, when giving a fluid bolus/infusion – after having determined that the patient is likely fluid responsive AND tolerant – one should expect to see an increase in ETCO2 (other parameters being constant), an increase in CO, an increase in NIRS values. The absence of such response should make one reconsider the intervention, because without benefit, we are left only with side effects.

Here is a patient’s cerebral (top) and and somatic (thigh – bottom) and CO values. This patient had an RV infarct and was in shock.

IMG_7948IMG_7946

 

Following initiation of dobutamine, this is what occurred:

IMG_7951IMG_7949

Given that we cannot always predict the response to an inotrope – depending on the amount of recruitable myocardium, it is reassuring to see an improving trend. This enabled us to decrease the vasopressor dose significantly.

Note that, so far, and unless some good evidence comes out, I don’t use a goal value, and so far, I have not identified a value that is predictive of prognosis. However, downward trends usually bode very poorly. For instance, I had a severe chronic cardiomyopathy patient whose cerebral saturation was 15%!!!  But more surprisingly, she was awake, alert and hemodynamically stable. Adaptation.

Part 2 and the stuff on cardiac arrest coming soon!

Please, anyone using NIRS in shock, share your experience!

 

cheers

 

Philippe

Venous Hypertension: The Under-Appreciated Enemy Part 2: Discussion with Jon-Emile

So I posted about this a few weeks ago, and the discussion it brought up with Jon-Emile (www.heart-lung.org) turned out to be way better than the original post, and I just wanted to make sure everyone interested got to see it, so here we go (part 1 is here, for those who didn’t come across it: http://wp.me/p1avUV-bJ):

Jon-Emile

 

Jon-Emile: This is a great topic for review Philippe!

I have come across this problem, certainly on more than one occasion. I was first introduced to the idea of renal venous pressure and renal hemodynamics as a house-officer at Bellevue Hospital in New York. Dr. Jerome Lowenstein published work on this phenomenon as it pertained to ‘Minimal Change Syndrome.” He used to ‘wedge’ the renal vein and measure renal interstitial pressure in these patients and measured the response to diuresis. It was very enlightening and made me feel more comfortable given more diuretics in such patients. [Am J Med. 1981 Feb;70(2):227-33. Renal failure in minimal change nephrotic syndrome].

I am also glad that you bring up the cranial vault in this discussion, because I have often wondered if the encapsulated kidneys behave in a similar way. That is, as renal interstitial volume increases from edema, if there is some point on their compliance curve [like the cranium] where there is a very marked increase in renal interstitial pressure? I have found a few articles which loosely address this idea, but would be interested if anyone else knew of some. In such a situation, there would be a ‘vascular waterfall’ effect within the kidneys whereby the interstitial pressure supersedes the renal venous pressure [like West Zone II in the lungs]; then, renal blood flow would be driven by a gradient between MAP and renal interstitial pressure [not renal venous pressure]. I know of one paper that addresses this physiology in dogs, and finds the vascular ‘choke point’ to be in the renal venous system and not Bowman’s space.

What’s even more interesting, is that when renal interstitial pressure is elevated is that the kidney behaves in a sodium avid state [i.e. urine electrolytes will appear ‘pre-renal’] and this physiology has been known for at least a century!

Lancet. 1988 May 7;1(8593):1033-5. Raised venous pressure: a direct cause of renal sodium retention in oedema?

There is no good explanation as to why this occurs, but one I read is that the high renal interstitial pressure tends to collapse the afferent arteriole and the decrease in afferent arteriole trans-mural pressure which facilitates renin secretion [just like low blood pressure would]; but that would require a fairly high renal interstitial pressure unless the MAP was concomitantly low.

Again, what I must caution [and I’ve been personally wrong about this] is the reflex to give diuretics when seeing a ‘plump IVC’. When I was treating a woman with mild collagen-vascular-related pulmonary arterial hypertension, community-acquired pneumonia with a parapneumonic effusion and new acute renal failure, I assessed her IVC with ultrasound. It was plump an unvarying. I lobbied the nephrologist to try diruesis based on the aforementioned reasoning, but was very wrong. Her kidneys took a hit with lasix. What got her kidneys better was rehydration. In the end, what happened was her mild PAH raised her venous pressure and the hypoxemic vaso-constrction from her new pnuemonia only made that worse. Her right heart pressures, venous pressure and probably renal venous pressure were undoubtedly high. But I didn’t take into consideration her whole picture. She had a bad infection, had large insensible losses and had not been eating and drinking. She was hypovolemic, no doubt, despite her high right heart pressures. Fortunately, her pneumonia resolved and fluids brought her kidneys back to baseline.

Thanks again for another thought-provoking topic

 

Me: Great points as usual Jon, and your last one brings up a bit of a concern I have always had. To play devil’s advocate, one could argue that it may have been resolution of the pneumonia and its metabolic sequelae and possibly other treatment that resulted in improvement of her renal failure, rather than the fluid, no? Did her hypoxia resolution decrease PAP back to normal – with IVC dynamics restoring – and relief of renal congestion, and improvement “despite” fluid?

To me, fluid administration must – at least transiently – increase CO to have any effect on the perfusion side. To do so, my understanding is that it has to go from right to left. Because of the pericardium and interdependence, if RAP exceeds LVEDP, we will start to impair LV preload, which sets up the vicious cycle of a shrinking LV and growing RV. If we can’s increase our RT heart output, obviously our LV CO headed to the kidneys can’t increase either. Hence the assumption would have to be that somehow this additional fluid can – by increasing RV preload (without increasing RV size and further impinging LV?) – help overcome elevated PAP and increase right to left flow. To me, hard to believe without a pericardiectomy (on a short time frame, naturally). Hence I struggle with understanding how a really plump IVC with little variation (if significant pleural pressure variation is occurring) can really still need fluid.

I’d really, really like to get your comments on this. I’ve had a number of conversations about this with people – some of them pretty bright – but none satisfying. Am hoping you can point out my flawed thinking.

 

Jon-Emile: Philippe, you ask very good questions. Your first point is quite valid. I think we have a bias of assigning meaning to a particular intervention because we think that particular intervention will work. For the patient I treated, we administered multiple drugs [oxygen, antibiotics, bronchodilators, we may have even given a dose of steroids] and yet I assign meaning to the fluids given. I think in all patients with complex hemodynamics that there are multiple co-varying interventions that all [hopefully] push the patient in the right direction – making it quite hard to grant significance to one in particular. Yet in the patient I treated, the timing with respect to creatinine change and urine output made it very hard to argue in favor of diuresis. We were checking her creatinine fairly regularly as she was in step-down and we were concerned about the trajectory of her illness. With lasix, her creatinine jumped abruptly on the following chemistry while with fluids, creatinine dropped and her urine output really picked up.

Which brings me to Ulrich’s point. It is well-taken and I hope to have a pulmccm post on this shortly. While the CVP does not have any correlation with volume status or volume responsiveness as you point out, the physiology of the CVP can help explain confusing echocardiographic findings.

All a plump, unvarying IVC with spontaneous inspiration means [if you believe the Guyton, or Magder approach] is that the IVC transmural pressure is remaining on the flat portion of its compliance curve during inspiration.

http://www.biomedcentral.com/content/pdf/cc11824.pdf

In other words, the IVC is at such high volume [on the flat portion] that lowering its transmural pressure [lowering the CVP, raising the intra-abdominal pressure or both] does not cause it to shrink in volume.

The question then becomes why is the IVC in this state? And a great analysis to this question is to consider the determinants of great vein volume [which really is a question of great vein/right atrial pressure or the CVP – which is related to volume by compliance].

There are two primary processes which will raise great vein volume and these flow from the Guyton Diagram 1. excessive venous return 2. poor cardiac function or a combination thereof [its really just inflow versus outflow]. Volume status plays one part of venous return, so certainly, if someone is hugely fluid overloaded, their venous return will be enhanced and this will favour a high great vein volume and high great vein pressure, BUT this will be mediated by cardiac function because if the heart can eject the large venous return it is receiving, then the great vein pressure and volume won’t change or may be low. Conversely, if cardiac function is poor, a patient could have a low venous return [e.g. be hypovolemic or euvolemic] and still have a high great vein volume and pressure – simply, because the heart can’t expel from the thorax what little venous return it receives. Importantly, poor cardiac function can mean almost anything [valve dysfunction, tachycardia with arrhythmia, high afterload, poor contractility, etc.].

To me, the above is the true value of thinking about Guyton and the CVP, so when I approach a patient, I try to think about what their venous return curve looks like [by a clinical exam] and I use a TTE to actually see what their heart function looks like [and to me this is the true power of ICU TTE]. The above also explains why CVP simply cannot be a marker of volume status.

In the patient I was treating, her history and physical really suggested poor venous return [she was clearly with a pneumonia, hadn’t been eating and was euvolemic to dry on examination] yet her great vein volume was high on TTE which meant that her cardiac function was most likely poor [on the Guyton Diagram her low venous return curve would be intersecting a very low, flattened cardiac function curve such that shifts with intra-thoracic pressure would not change right heart pressure at all].

But why was her heart function poor? Why could her right heart not eject what little inflow it was receiving? It was probably a combination of things. The pneumonia probably increased right heart afterload which caused some TR, she was tachycardic so wasn’t getting optimal filling time, she was septic with perhaps some underlying cardiomyopathy, perhaps her diastolic blood pressure was lower than normal [she was an elderly lady with likely stiff arteries] and she wasn’t perfusing her right coronary artery well and was suffering from relative ishcemia] it’s certainly is a lot of hand-waving, but all taken together perhaps plausible.

The antibiotics improved her lung function as did the bronchodilators which lowered pulmonary vascular resistance which improved right heart forward flow, maybe the inhaled beta-agonists increased her contractility, maybe the oxygen also lowered her pulmonary vascular resistance, maybe the steroids sensitized her to catechols and this raised her blood pressure and coronary perfusion pressure which improved her right heart function, but also maybe the fluids? Empirically, and in retrospect, venodilating her with lasix probably really lowered her venous return and this crashed what little cardiac reserve she had. It was improving her venous return with fluids that helped.

Sorry if this post is getting too long …

In terms of ventricular interdependence [an excellent, under-appreciated point in the ICU] I think that you have to be very careful extrapolating whether or not this effect is present from an IVC examination. In a classic paper [that caused much consternation at the time] Pinsky found that right atrial pressure was completely uncoupled from right ventricular end-diastolic volume [why the CVP is a poor indicator of volume responsiveness]. Her is a recent review of that paper by Pinsky himself.

http://www.ncbi.nlm.nih.gov/pubmed/24760121

The take home is that while right atrial volume and pressure [and by corollary great vein volume and pressure] can be high, this may not translate to a right ventricle near its elastic limit. Pinsky offers no good explanation as to why this is, but postulates that it may have to do with the complex RV geometry and how this changes during diastole. So until there is a widely accepted means of assessing RV filling with TTE [like an Ea ratio] which could pick up a restricted filling pattern, this is really hard to call on echo. As you are aware, you could look for a flattened septum or D sign during diastole, but I’m not sure how well that sign predicts a patient’s response to a fluid challenge – it certainly screams caution.

This Pinsky paper also highlights a potential disconnect between the physiology proximal to the tricuspid valve and the physiology below it which is also part of my general reluctance to use IVC volume change as a marker of fluid responsiveness, just as I have total reluctance to use CVP [or its change with respiration] as a marker of fluid responsiveness.

Unfortunately, a lot of the time it comes down to ‘guess and check’ – give fluids or give lasix and see what happens. This is why I firmly believe that determining volume status and volume responsiveness are the hands-down hardest party of ICU medicine.

If you’re still reading, I hope this helps.

One more point. I don’t think I gave a full explanation to one of your questions. Please bear with me as this is exceptionally hard to explain with words [indeed why I made heart-lung.org].

The venous return and cardiac function curves are essentially inverse of each other [that is lowering right atrial pressure increases venous inflow but decreases cardiac outflow] so they approximate the letter X [venous return is the \ and cardiac function is the / & the point at which the two lines intersect make up the CVP and defines cardiac output].

If you consider the patient I described, If we assume her venous return is low [because she is venodilated from sepsis and hypovolemic from low PO] then the venous return curve [\] is shifted leftwards. If we assume her cardiac function is poor the cardiac function curve slope [/] is shifted down and to the right.

When she takes a breath in, the lowering of intrathoracic pressure pulls the cardiac function curve leftwards [lowers its pressure relative to venous return] while the increase in in abdominal pressure with diaphragm decent tends to temporarily increase venous return by decreasing abdominal venous capacitance. This effect shifts the venous return curve in a rightward manner.

If the patient’s venous return curve initially intersects the ascending portion of the cardiac function curve [i.e. she is truly volume responsive] BUT, the intersection is very near the plateau of the cardiac function curve [i.e. the portion of the cardiac function curve that will render the patient non-volume responsive and also favour unvarying respiratory change in right atrial pressure/volume with inspiration], THEN with inspiration it is possible to see the intersection of the two curves on the flat portion of the cardiac function curve [as the cardiac function curve is pulled leftwards and the venous return curve is pushed rightwards], even though she does have some cardiac preload reserve. This would be an example of impaired specificity of IVC volume change with spontaneous inspiratory effort as a predictor of volume unresponsiveness [i.e. a false positive for a plump IVC predicting the lack of fluid responsiveness].

I address this physiology in chapter 6 parts C and D and chapter 8 part F.

 

Me: Very, very interesting. I think this discussion, as many, show how medicine is not a “hard science” but remains a “pseudo-science”, inherent to the fact that we are blending physics, chemistry, biology and cannot really apply simple principles of flow and pressures when dealing with elastic, muscular systems lined with microscopic coating whose compliance and resistance change from moment to moment and thru effect of neural and hormonal influence. There are simply too many unmeasurable variables to come up with single guidelines and rules.

I think, as you say, that there remains a need for some degree of trial and error, that we are hopefully narrowing with the appropriate application of technology and proper data integration.

I’ll percolate all this and see how I can tweak my mental model!

Thanks a lot Jon-Emile!

Philippe

 

 

please visit Jon-Emile at http://www.heart-lung.org

Heart-Lung

 

 

cheers!

…and don’t forget to register for CCUS 2015 at http://www.ccusinstitute.org!!!

Philippe

A Bedside Ultrasound Case & Poll: All Infiltrates are not created Equal: A Follow Up! #FOAMed #FOAMcc #FOAMus

Ok so so far, the votes show the following:

CHF 52%

PE 26%

Pneumonia 21%

So, as most of you had figured out, the fever and white count turned out to be fairly insignificant.  I started diuretics on him and stopped IV fluids (in truth, he spent a few hours still receiving IV NS at 100cc/hr as it sadly slipped by me – I know… NS to add insult to injury).  I also stopped antibiotics to the alarm of some, but keep in mind we have a lot of c.difficile in our institution, and I did not believe the had CHF AND a significant pneumonia (that would go against Occam’s razor…). He was not septic, and another discrepancy that led me away from the diagnosis of pneumonia is that a patient with significant bilateral infiltrates due to pneumonia is sick: toxic, dyspneic, fulfills Scott’s LLS score of 1 (Looks Like Shit – range 0 to 1).

Within a few hours and perhaps a negative balance of a liter or so, he feels much better. Here is his IVC at that point:

36 hours later, his CXR is clear and he is off O2.

Angiogram turns out normal – as anticipated – EKG only ever had some vague non-specific ST abnormalities. He likely had a viral cardiomyopathy – some ancillary tests still pending (HIV, etc), but is to be discharged soon.

For those who voted pneumonia, certainly initially it could not be ruled out, only the clinical evolution made it highly unlikely as a significant player.

For those who felt this represented pulmonary embolism, remember that the primary hemodynamic mechanism will be right heart failure, hence the RV would most likely be as large, and potentially larger depending on the severity of the embolism. Again, this cannot be ruled out by bedside ultrasound, it can only be ruled out as a main cause of respiratory failure. Also note that the chest xray is generally normal, or may show the peripheral wedge shaped infarct (Hampton’s hump). Bilateral infiltrates would not be the rule. But it’s always a good thing to keep it in mind!

Bottom Line?

I think this case illustrates well the limitations of physical examination, and although more commonly, pneumonias (especially in the elderly) get digressed because they “had crackles,” sometimes, patients we might not expect may have CHF.

From the moment one notes a large, plethoric IVC, one should anticipate downstream pathology of some kind (overzealous iatrogenic fluid overload being the exception), whether tamponade, pulmonary embolism, LV failure, pulmonary hypertension, but something.

Hence, in this case, bedside ultrasound proved invaluable. After all, he was recieving less-than-optimal therapy for CHF: fluids and antibiotics… This may be a case that would have proceeded to “ARDS”, and although I don’t doubt that at some point along the line, an echo would have been done, the delay may have had consequences. In our center, no one gets into the ICU without at the very least a cardiopulmonary bedside ultrasound. It is done routinely, not only for specific indications – the real indication is having a patient in front of you.

Please don’t forget, if this is up your alley, don’t miss CCUS 2015: Way Beyond EGDT and ACLS!!!  #CCUS2015

cheers!

Philippe

 

Jon Emile says:

Great case, great windows and images. I agree with your management totally. I do recall once, however, having a patient admitted for heart failure following a bedside TTE performed by a great resident, unfortunately [and in retrospect] the patient likely had a septic cardiomyopathy. The patient felt great with diuresis, but then his BP crashed as the sepsis took hold.

Recall the classic paper by Parrillo NEJM 1993 who looked at the left ventricle during the acute phase of septic shock and found LVEDV to LVESV values of 225 ml to 150 mL. The EF was in the low 30s. During the recovery phase, LVEDV to LVESV was 150 to 75 mL and EF of 50%. He noted that dilation of the left ventricle seemed to confer a mortality benefit, & that this may be a compensatory response to maintain stroke volume. This may be more striking in young patients as yours. When I first read your case a mycoplasma peri-myocarditis came to mind [I treated a case of this as a resident in the Manhattan VA]. The classic finding in this disease being bullous myringitis.

Thanks for the awesome echo videos!

 

Great point Jon!  Septic cardiomyopathy – which is very common – is definitely something to keep in mind. Indeed the LV dilation noted by Parillo would be a sensical adaptation to limited contractility. I remember seeing a particularly impressive case in a young woman with significant dilation and an EF in the 15-20% range, with incredibly rapid recovery to the 40’s and 50’s  by a day later. I’ve yet to see septic cardiomyopathy happen, however, in a patient who isn’t that sick, i.e. no pressors, no acidosis, etc…

Great point about mycoplasma, which was brought up by our ID consultant at first, but who also agreed he wasn’t that sick and agreed to stop once noting the CXR had cleared with diuresis.

 

Thanks for reading!

Limited EGDT in Zambia Study: Salt Water Drowning Syndrome… #FOAMed, #FOAMcc

So in this month’s issue of Critical Care Medicine, an interesting article was published, where investigators took a (necessarily) simplified version of EGDT to Zambia and applied it to septic patients. It turned out they had to stop it early due to an excessive number of cases of respiratory failure in the treatment group.  The difference was – you guessed it – they got “aggressive” volume resuscitation – up to 4l in the first 6 hours – guided by JVP assessment, and blood and dopamine if needed.

Simplified_Severe_Sepsis_Protocol___A_Randomized.1

The amounts received by 6, 24 and 72h were 2.9, 3.9 and 5.6 l for the treatment group vs 1.6, 3.0 and 4.3 l.

Now lets keep in mind that the patients, for the most part, did not have access to critical care, so the limited resources for ventilatory support made stopping the trial a bit early the only reasonable thing to do. Mortality in the treatment group was 64% and control 60%. High numbers, but this is explained in part by the prevalence of HIV (80%) and TB (37% of the HIV positive patients), so this data can’t necessarily be extrapolated to all populations, but to me, this is physiological support for the concept that aggressive fluid resuscitation – as I have stated in prior posts/podcasts – is most dangerous in those patients where the septic source – presumably “leaky” is ill-equipped to handle extra-physiological fluid.  In these patients, as Myburgh states in a sepsis talk, “noradrenaline is the fluid of choice,” and although perhaps a bit tongue in cheek, this certainly speaks to my beliefs of resuscitating to euvolemia rather than to the lack of volume responsiveness (http://intensivecarenetwork.com/myburgh-john-beta-blockers-and-sepsis/).

Additionally, these patients were not hypotensive, and lactate was not available – local limitations of medical system. Hence the definition of severe sepsis triggering aggressive fluid resuscitation was based  on SIRS type criteria, rather than some form of volume assessment.

 

Bottom line?

Be cautious in aggressive fluid administration in pulmonary sepsis. What, I really dislike when people say “be careful” or “be cautious,” because let’s face it, that doesn’t really mean anything, does it?  It doesn’t tell you what to actually do… We are frontline clinicians, so I’ll say to limit fluid resuscitation in pulmonary sepsis.  2 litres up front?  Probably ok so long as I have a varying, mid-size IVC (maybe 10-15mm – arbitrary and chronic pulmonary disease and hypertension have to be factored in) and a decent heart, but I don’t want to get to the point of no longer being fluid-responsive. Rather, go to pressors a bit earlier, perhaps, and no need for ongoing “maintenance” fluids at 100-150 cc’s an hour – remember that 80% of this wonderful therapy ends up where we don’t want it to.

 

cheers!

 

Philippe

PS for awesome talks by amazing speakers, don’t forget to register for CCUS 2015!!! For more info: http://wp.me/p1avUV-aU and register at http://www.ccusinstitute.org

Venous Hypertension: The Under-Appreciated Enemy…A Tale of Nephrologists, Neurosurgeons and Andre Denault…and a podcast. #FOAMed, #FOAMcc

So, some of you may have seen one of my earlier posts about the myth of low-flow renal failure in CHF (http://wp.me/p1avUV-2J), and be aware of my growing conviction that elevated venous pressures – too often sought after – are actually fairly nefarious.

So a couple of recent and very interesting pieces to add to the puzzle. First, I listened to an awesome podcast about

ICP by Wilson (http://intensivecarenetwork.com/wilson-monro-kellie-2-0/) which is an absolute MUST LISTEN to anyone in acute care.  One of those moments where all of a sudden someone shines a light in a dark corner you’d never really paid much attention to. Really, really cool and game-changing, at least certainly in the physiology model I play with in my head every time I deal with a patient who is genuinely sick.  In a nutshell, just to make sure everyone actually goes to listen to it, Wilson explains how you can get venous hypertension simply from increased cerebral blood flow… And we happen to be faced with one of the most common causes of increased CBF almost every day: hypoxia.  So when you are dealing with neurological injury (CVA/SAH/post-arrest), the danger of hypoxia (remember the concept of avoiding secondary injury of hypoxia, hypotension and hyperthermia?) lies not only in the obvious cellular lack of oxygen, but also that it is the most potent stimulus for increased CBF, and the main issue being that our venous system is simply not designed to accommodate that kind of traffic, resulting in venous hypertension without (yet) truly elevated ICP.

I’m also faced with the recurrent problem of having to be somewhat “rude” when not following suggestions from nephrology consultants in some of  my ICU patients, when they advise fluids or holding diuretics in patients with renal failure AND elevated venous pressures (as assessed by a large, non-varying IVC – in the absence of reversible causes such as tamponade, tension pneumo, etc…).  It isn’t their fault. They aren’t looking at the venous system (not bedside sonographers yet – “looks dry” on exam/gestalt is as much as you’ll get), and they don’t hold venous hypertension in high (or any) regard (yet, hopefully).

So I was totally psyched when, during a really cool conference (#BMBTL) organized by @EGLS_JFandMax, my highly esteemed colleague and friend Andre Denault (not yet on twitter…working on him) gave a talk – here is a segment:

And here is the article he is referring to:

Fluid+balance+and+acute+kidney+injury

So it isn’t like this is unknown, it simply isn’t at the forefront of our clinical mind-set, for the most part. Congestive renal failure and congestive cerebral failure are simply not things we routinely diagnose, though they MUST be just as as prevalent as congestive heart failure, which we all clearly believe in…

So just another angle to keep in mind, both when resuscitating and when managing patients with organ dysfunction of almost any sort…

 

Love to hear your thoughts!

…and if you like this kind of stuff, if you are an acute care doc, you’ll want to come to CCUS2015! http://wp.me/p1avUV-bG

Philippe

 

Jon-Emile Kenny (of the awesome heart-lung.org fame) says:

This is a great topic for review Philippe!

I have come across this problem, certainly on more than one occasion. I was first introduced to the idea of renal venous pressure and renal hemodynamics as a house-officer at Bellevue Hospital in New York. Dr. Jerome Lowenstein published work on this phenomenon as it pertained to ‘Minimal Change Syndrome.” He used to ‘wedge’ the renal vein and measure renal interstitial pressure in these patients and measured the response to diuresis. It was very enlightening and made me feel more comfortable given more diuretics in such patients. [Am J Med. 1981 Feb;70(2):227-33. Renal failure in minimal change nephrotic syndrome].

I am also glad that you bring up the cranial vault in this discussion, because I have often wondered if the encapsulated kidneys behave in a similar way. That is, as renal interstitial volume increases from edema, if there is some point on their compliance curve [like the cranium] where there is a very marked increase in renal interstitial pressure? I have found a few articles which loosely address this idea, but would be interested if anyone else knew of some. In such a situation, there would be a ‘vascular waterfall’ effect within the kidneys whereby the interstitial pressure supersedes the renal venous pressure [like West Zone II in the lungs]; then, renal blood flow would be driven by a gradient between MAP and renal interstitial pressure [not renal venous pressure]. I know of one paper that addresses this physiology in dogs, and finds the vascular ‘choke point’ to be in the renal venous system and not Bowman’s space.

What’s even more interesting, is that when renal interstitial pressure is elevated is that the kidney behaves in a sodium avid state [i.e. urine electrolytes will appear ‘pre-renal’] and this physiology has been known for at least a century!

Lancet. 1988 May 7;1(8593):1033-5. Raised venous pressure: a direct cause of renal sodium retention in oedema?

There is no good explanation as to why this occurs, but one I read is that the high renal interstitial pressure tends to collapse the afferent arteriole and the decrease in afferent arteriole trans-mural pressure which facilitates renin secretion [just like low blood pressure would]; but that would require a fairly high renal interstitial pressure unless the MAP was concomitantly low.

Again, what I must caution [and I’ve been personally wrong about this] is the reflex to give diuretics when seeing a ‘plump IVC’. When I was treating a woman with mild collagen-vascular-related pulmonary arterial hypertension, community-acquired pneumonia with a parapneumonic effusion and new acute renal failure, I assessed her IVC with ultrasound. It was plump an unvarying. I lobbied the nephrologist to try diruesis based on the aforementioned reasoning, but was very wrong. Her kidneys took a hit with lasix. What got her kidneys better was rehydration. In the end, what happened was her mild PAH raised her venous pressure and the hypoxemic vaso-constrction from her new pnuemonia only made that worse. Her right heart pressures, venous pressure and probably renal venous pressure were undoubtedly high. But I didn’t take into consideration her whole picture. She had a bad infection, had large insensible losses and had not been eating and drinking. She was hypovolemic, no doubt, despite her high right heart pressures. Fortunately, her pneumonia resolved and fluids brought her kidneys back to baseline.

Thanks again for another thought-provoking topic

 

dr.uthaler says:

hi, i am an anaesthesist / intensivist from austria. very interesting topic. at the esicm meeting last month in barcelona there was a very good session about hemodynamic monitoring focusing on the right heart and the venous system. the lectures about the guyton approach to fluid management were a big eye opener and certainly changed my approach to patients in the real life icu world. what i always do now is to correlate the cvp with the morphology of the right heart. lets say i have a cvp of 5 with a large right ventricle then i don’t hesitate to give diuretics. i really can’t understand how recent guidelines (surviving sepsis campaign) can still state a cvp of 10-12 as a target value ! new german s3 guidelines on fluid management at least advise not to use cvp for hemodynamic monitoring. guess who was against it? the german sepsis society, probably because they didn’t like to upset their friends from the surviving sepsis campaign group 🙂 let me send you a link to a very good article: Understanding venous return: Intensive Care Med. 2014 Oct;40(10):1564-6. doi: 10.1007/s00134-014-3379-4. Epub 2014 Jun 26. i went through some of the cited articles – awesome information! thanks for the interesting discussion and keep on posting !

Sounds like a good session!  I cannot understand why CVP remains in guidelines when there is clear, irrefutable evidence that it does not work to estimate either volume status or responsiveness.   As you say, other, more physiological information renders CVP irrelevant.  I have not used CVP in years. Thanks for the reference, will make sure to check it out!

thanks for reading!

Philippe

Bedside ultrasound for Hospitalists: A Must! #Hospitalist, #FOAMed, #FOAMus

Hi, so here is a quick little overview on why anyone taking care of hospitalized patients unequivocally need to use bedside ultrasound in a daily, integrated fashion, even if they don’t realize it yet.

It isn’t just for the flashy spot diagnoses in the ICU or the ER, but really for daily rounds, assessing common cardiac, respiratory, renal, gastrointestinal and even neurological syndromes.

Love to hear from any hospitalists or medical consultants out there about their use of bedside ultrasound!

Cheers

Philippe