The Resus Tracks: Trans-Pulmonary Dilution Catheters in the ED…myth or reality? #FOAMed, #FOAMer

So anyone who knows Korbin (@khaycock2) realizes he is a true trailblazer in the ED, essentially doing cutting edge critical care from the get go in his shock patients. In my mind this should be the goal for any critically ill patients, that they get the highest level care right at entry and for however long they may be staying in the ED until they get to the ICU.

So today, I was really happy to corner Korbin lounging somewhere in sunny California (as 6 inches of snow come down hard in Montreal) to tell me how he is using this technology in his resus patients.



So this has got me interested in using this technology. I see it as an early warning signal that your patient may be less fluid tolerant than you may think, and that the signs of pulmonary fluid intolerance I use (oxygen requirement, appearance of B lines (FALLS Protocol-style), etc…) have yet to manifest.

So I’m looking forward to hearing Korbin explain this further (during H&R2020!) and in actual cases where the change in management is clear.









H&R2019 Lecture Series: A Christmas Special TripleHeader! #FOAMed, #FOAMer

Happy holidays to all, here is a little gift from H&R2019!

So here’s a gem from Kylie, who is my reference point for GI POCUS. Ever since this lecture I’ve been working on upping my abdominal scanning capabilities!

GI POCUS with Kylie Baker


Also, if you’ve been working on your Doppler applications, best do so while truly understanding it, both strengths and pitfalls. Here’s the physiology master shedding some light and some insights.

Advanced Doppler with Jon-Emile Kenny


And finally, for the airway fans, here’s Rory Spiegel (@EMNerd) sharing his skills with the bougie.

The Art of the Bougie with Rory Spiegel





For more lectures that will change the way you practice medicine, do try to make it to H&R2020! It is the very ethos of this small conference, to exchange with docs pushing the envelope of acute care as well as like-minded peers. This isn’t the conference to go to if you want to see what most people do and review guidelines. This is the one to go to if you want to be on the cutting edge. Only 100 spots, has sold out every year.  For more info and registration click here!

The Resus Tracks: Josh Farkas on Sepsis Metabolic Resuscitation and the CITRUS-ALI Study. #FOAMed


So metabolic resuscitation is a topic that both Josh (@Pulmcrit) and I are really interested in. We were looking forward to the CITRUS-ALI study. The results, to me, are good. They continue to establish the fact that there are no real side effects, particularly renal, as this was a concern to some (despite the already large data sets – particularly in the Matsuda study), and in an even higher dose than the Marik study.

Of course since the study was not designed to show a mortality benefit, it wouldn’t be clean to tout their results from that angle, but it certainly should be hypothesis-generating (imagine the cheers from the pundits who would certainly have used it in reverse had the mortality been increased instead!!!).  So for me, it changes nothing, because – if my institution hadn’t decreed (for no legitimate reason I can see) that I cannot use it in patients that I feel would benefit – I would still use it as an adjunct to septic shock management.

There are more studies around the corner, and hope they will come out before next may, so that Josh can give us an update for H&R2020 (#Hresus20)!

Here is our chat:





H&R2019 Lecture Series: Weimersheimer (@VTEMsono) on Massive Transfusion. #FOAMed, #FOAMer

Sorry for the delay, been bogged down in getting H&R2020 off the ground! But here is another goodie from H&R2019, my good friend Peter W. on an ever-important trauma topic.  Enjoy!

Weimersheimer on MT – H&R2019.





ps for anyone interested, H&R2019 On Demand can be found here!

The Resus Tracks – A Chat w/Lars Chapter 1. #FOAMed, #FOAMcc

So for anyone not familiar with Lars (@LMSaxhaug on Medtwitter), if you are into applied resuscitation physiology, this is someone to follow. He seems to be Norway’s answer to Korbin Haycock (@khaycock2).

He is a POCUS researcher and currently a Cardiology/Internal Medicine Trainee, and I hope someone who will help take POCUS to another level. I’ve been meaning to chat with him for a while after some incredible threads on twitter really pushing the applied bedside physiology envelope.

So here is our first discussion, with a few more planned in the near future as we get down to the nitty gritty. But everything does need an intro.

So here is our discussion:

I think Lars makes some excellent points, particularly the need for global hemodynamic assessment, not having a narrow, almost single parameter threshold approach, as well as his point on adaptative tachycardia – though I am not in full agreement about the atrial fibrillation, but most definitely agree that most of the cases in the ICU are secondary, and deciding how much it is contributing to the hemodynamic compromise isn’t always clear.

Looking forward to further discussions, and I smell a panel discussion with Korbin and Jon-Emile on RVOT doppler!









The Resus Tracks: A Chat with Domagoj Damjanovic! #FOAMed, #FOAMcc, #FOAMer


So I recorded a chat with Domagoj (@domagojsono in the twitterverse), an anaasthetist-resuscitationist-intensivist from Freiburg a few months ago, but with H&R2019 and its aftermath, been slow in processing a lot of stuff I’ve got stocked… Apologies!

So in this one, DOmagoj and I discuss a bunch of resus topics, from eCPR to tissue oximetry. I’m really jealous of the fact that he does prehospital work with an ECMO van!!! …and with cool gear and of course, POCUS!

Here is the chat, hope it leads to thoughts, discussion and contribution!

And here are some links:

low budget ultrasound simulation
and here’s the editorial in Resuscitation,





Venous Congestion from different Clinical Standpoints. #FOAMed, #FOAMcc, #FOAMus


So last week sometime we had an interesting twitter exchange which made me realize it is important to explain how some of us are using venous POCUS in different clinical scenarios, which is key, because the development of monosynaptic clinical reflexes with POCUS findings is a rabbit hole we should try not to go down. Instead, POCUS should be about asking the right question and taking that answer as a piece of the pathophysiologic puzzle facing us, which may mean intervening sometimes, and sometimes not, for the same given finding, but with different surroundings.

Here is the twitter exchange.

Thanks to those involved in that discussion – it is how we grow!

And here are some thoughts:

For those not up to speed on venous congestion POCUS I put up the chapter that Korbin Haycock, Rory Spiegel and I worked on in this earlier post.

Here are Korbin’s thoughts on this:

I’m very glad Dr. Eduardo Argaiz pointed this case out, as it brings up considerations apropos both chronic venous congestive cases as well as management of acute illness, particularly in sepsis, where we would expect patients to most likely be fluid responsive, but fluid tolerance is largely overlooked with current management strategies by the majority of clinicians.

Phil’s above audio commentary points out the difference is these two broad categories very nicely. If you didn’t listen to it–you should.

With respect to chronic venous congestive conditions, the knowledge and application of Doppler assessment to therapy will hopefully be the next advance in management at large. Already, I think there is more than adequate research available to show the value of Doppler POCUS (D’POCUS, D/POCUS, or DPOCUS?) in managing these patients. It’s only a matter of clinicians willing to commit to learning and integrate this technology into their skill set.

With respect to resuscitation of the acutely ill patient, there is by far less data, and we are probably into the realm of N=1 here, in terms of how to manage these patients. But, I personally believe–and I understand this is my opinion–that current trends in resuscitation (especially sepsis resuscitation), largely ignores the effect of over volume resuscitation and the potential downstream damage inflicted on our patients.

This theoretical damage of over aggressive fluid resuscitation is multifactorial, including glycocalyx shedding issues/endothelial dysfunction, positive fluid balance and EVLW causing increased mortality (which there is ample evidence for, I think), venous congestion leading to perfusion injuries to encapsulated organs, such as the kidney (AKI) and brain (congestive encephalopathy), and end organ edema leading to the perpetuation of a malignant inflammatory syndrome (portal HTN and gut edema).

In the case called out by Dr. Argaiz, (which can be reviewed by the previous post on this website) my patient had an IVC that whilst not plethoric, was not an IVC that one would expect to find in a patient with a typical distributive shock pattern (i.e. increased cardiac output, decreased SVR, and decreased RAP). Firstly, the complicating factor of atrial fibrillation with RVR was central to the patient’s shock state, however this was quickly addressed with rate control. However, in addition, this particular patient did exhibit additional signs of venous congestion. The portal vein was pulsatile and the intrarenal Doppler pattern was interrupted/bi-phasic in nature. Granted, a pulsatile PV Doppler could be interpreted as related to the hyper dynamic nature of septic shock (as the esteemed Dr. Denault correctly cautioned in his comments on the original post), however a less than flat IVC and the intrarenal findings gave weight to a venous congestive hypothesis as a cause the PV findings as well as a possible cause for his AKI evident on his initial labs.

With this particular case, given my personal global POCUS/FOCUS assessment of his increased LAP (high E/e’), RV dysfunction, RAP, PV, and intrarenal Doppler venous pattern, AND that fact that the RRI was insanely high with an AKI, I elected to treat my hypothetical construct of his renosarca with furosamide and his RRI with vasopressin (as the NE infusion did increase his MAP, BUT NOT decrease his RRI–which the vasopressin infusion did decrease, or so I presume as no other therapeutic interventions were given with respect to the time frame the RRI decreased).

In the end his kidneys had recovered by the next morning, which I’m sure that any intensivist will admit is the opposite of the norm, as the kidneys usually get, at least transiently worse initially-being the delicate sissies/whimps that they are. Whether this was because of the diuretic or the vasopressin, or something else, is debatable for sure, but it sure didn’t get better by 30 cc/kg of crystalloid mandated by CMS, because he got not a drop more than what was needed to push the diltiazem, the lasix, the antibiotics, and the vasopressors.

So to summarize, in the case of chronic cardiogenic venous congestion, clinician realization and adoption of Doppler assessment of this entity will likely be the next leap in improvement in the management of these patients. In the case of acute resuscitation, venous congestion may be a bit more nuanced, and a more comprehensive evaluation is in order in a case by case fashion. However, I think recognition of the issues of over aggressive volume administration will probably be the next frontier in sepsis resuscitation.


Love to hear your thoughts!




The Andromeda-SHOCK trial with Korbin Haycock and the Nuclear Bomb Approach to Sepsis. #FOAMed, #FOAMer, #FOAMcc

So managed to pin another really bright guy down today and get his thoughts. Of course we digress some, but I think in all the topics that are truly important to sepsis resuscitation.



So I think all the resuscitationists I have spoken to tend to hover around the same common points:

  1. lactate is a marker of severity of insult/injury/inflammation but NOT something to specifically treat with an automatic fluid “chaser.”
  2. getting a global assessment of the patient’s perfusion – including things such as CRT is important.
  3. a strategy that seeks to exterminate fluid responsiveness is non-sensical and pathological.

The nice thing for our southern neighbours is that this study may give you a solid excuse to shake off that lactate mandate.

And I think that Korbin’s ending remarks are important, and it is something I try to teach residents, that there is little value in rapidly normalizing hemodynamic values – which treats the medical team very well – if there is an aftermath that is not beneficial for the patient. Kathryn Maitland’s FEAST study is the real groundbreaker for that concept. So probably a coordinated and careful ground assault is better than dropping the nuke.

 For more discussion on this trial check out Rory Spiegel’s breakdown at and our discussion at



a couple points:

First, much thanks to Scott Weingart whose technical pointers are improving my audio quality! Still a ways to go but on the path!

Second, if you’re not registered for H&R2019, there’s only about 20 spots left. And only a handful for the much-anticipated Resuscitative TEE course. Don’t miss out. If you enjoy these discussions, there will be plenty of that, especially in the protected meet-the-faculty times.

And finally, though he doesn’t yet have a blog, you can now follow Korbin on twitter @khaycock2!




The Andromeda-SHOCK study. A physiological breakdown with Rory Spiegel (@EMnerd). #FOAMed, #FOAMcc, #FOAMer

So recently published was the Andromeda SHOCK trial (jama_hernndez_2019_oi_190001) in JAMA this month.

Definitely interesting stuff, and have to commend the authors on a complex resuscitation strategy that had some real-world flexibility built in in terms of later generalizability and applicability for real-world cases. However there are some fundamentals I have concerns about. Let’s see what Rory thinks:

Yeah. I think the bottom line of opening resuscitationists’ eyes to NOT apply monosynaptic reflexes of giving fluids to elevated lactate is good. In that sense, definitely a step forward.

However, the insistence on maximizing CO under the illusion of optimizing perfusion remains problematic and leads to a congested state unless only a small or perhaps moderate amount of fluid is required to achieve non-volume responsiveness. I think it’s important to realize that the most rapid correction of hemodynamics is a surrogate marker and has not been definitively associated with survival across the board (eg the FEAST study and others), and it’s only proven clinical impact may be on health care workers’ level of anxiety.

Tune in soon for some other smart docs’ take on this!






oh yes and don’t forget The Hospitalist & The Resuscitationist 2019:


Volume status, CHAISE study and other silly questions. #FOAMed, #FOAMcc, #FOAMer

So I just finished reading the CHAISE study, which compared Parm as a surrogate for Pmsf as a surrogate for “volume status.”

It is a really cool study for anyone who loves physiology, which I definitely do, and there may be some interesting elements that can be clinically used.

But let’s first set the record straight. I do not believe that “volume status” is a medical and especially not a scientific term. It is a vague reference to intravascular fluid and can be interpreted in a lot of different ways, making it essentially useless. There is such a thing as the status of your flight (on time, delayed, cancelled), your reservation (confirmed, cancelled), your postal delivery (returned, delivered, in-transit), etc.  But there are no such clear strata for “volume status.”

So what are the true scientific terms that can be measured? Blood volume. So if we had a bedside radiolabelled substance test that could give us our true blood volume, that could give us a real measure of “volume status.”

On the other hand, that would be of marginal use clinically, in all likelihood.

Why? Because there are only three questions that the savvy clinician is trying to answer, in order of importance:

1. Does my patient need fluid?

2. Is my patient volume tolerant?

3. Is my patient volume responsive?

The answer to the first question is mysterious, outside of the obvious extremes, and in my opinion, anyone who feels they can clearly answer correctly is deluding themselves.

The answer to the second question is complex and multi-factorial and includes echographic findings (venous congestion/hypertension, B lines, effusions, ascites) as well as physical examination findings (tight abdomen, edema) and clinical findings (respiratory failure, intracranial pathology) and more. But this is a critical one, because if the answer is no, then you need some really compelling evidence to even consider trying to answer the third question.

The answer to the third question is, outside of the extremes, a bit of a quagmire of assessments and technology with generally poor evidence, particularly in terms of duration of effect. The most fearsome aspect of this third question is that it is usually the first question asked instead of the last, and thus has the side effect of creating volume-responsiveness terminators who, 500cc shot after 500cc shot end up satisfied that they have blasted responsiveness into oblivion.

But that’s probably bad news for the patient, that they have now pushed into venous congestion or salt-water drowning. Unless, of course, they just look for volume-responsiveness in the same way that bird-watchers do, for the sake of scientific satisfaction, and do no more than look, or maybe snap a picture at most.

So sure, echocardiographic parameters for volume status should be under fire, as all other parameters should. The authors in this paper themselves state two critical assumptions in the Parm/msf logic:

(1) that the fluid stay intravascular in the 10 minutes (ok, I’ll buy that)


(2) that the compliance is linear (nope, I don’t buy that, especially not in sick patients on vasopressors – as opposed to the normal cardiopulmonary and hemodynamic patients this study was done on).

Essentially, what should be under fire is the obsession with a measurable variable to assess intravascular volume. Too many factors in play, and the answer is useless clinically anyway.

On the other hand, this study is fascinating in terms of what might be done using dynamic Parm… Maybe individualizing pressor response, unstressed volume recruit-ability?  I’ll let @iceman_ex tell us about that at H&R2019!

So what is important is stop points. And reverse points. And yes, these can be looked at using POCUS, and also CVP, and CVP tracings. And yes, there is good data that venous hypertension is a bad state. And this is what you should be looking at, to make sure you have not pushed your patient into a universally pathological state of non-volume-responsiveness.



So Kylie (@kyliebaker888) had some comments and questions:

Hi Philippe, I just had to read the article after your blog. Most is a bit above my head (yeah right Kylie)– but I am perplexed by three things that I did understand -perhaps you can help me with….
1. Is P(arm) a useful measure? – it went up in 19 patients and down in 8 patients after a 500ml bolus yet they claim it went up (after statistical repeated measures or something)..if P(arm) is confounded by something else – I think they suggest sympathetic tone – shouldn’t we sort that before we start using P(arm) as a reference test.

I don’t think we can consider it to be a reference at all. I think it is an interesting physiological measure and that it might have some application in phenotyping vascular tone/compliance and possibly helping in vasopressor fine tuning. In my opinion for fluids it adds little to what we have.

2. What do you think of their IVC measure – 0.5cm below junction with RA?

As I do for all IVC diameter measures, I think it is inherently mathematically flawed to try to assess a volume using a diameter. Eyeball the whole IVC. A recent study finally looked at this. 3D IVC assessment and (of course) found it better.

3. What do you think of the fact that E changed, but e prime and E/e prime didn’t….That seems like there may not be enough precision in some of those measurements.

I agree.

I also have another savvy-clinician question to add to yours
Q4: Is my patient leaking?