Wicked Clinical Case: POCUS & Prone save the day! #FOAMed, #FOAMcc, #FOAMer

So I get a call from a colleague in the ED at about 2am, telling me about a 39 yr old woman post-arrest. So I start putting on my boots and warming up the car (it’s January in Montreal folks).  Apparently she had presented earlier in severe acidosis, the diagnosis is unclear, but she apparently got 2 units for an Hb of 49, then went into respiratory failure and got intubated. She arrested about 30 minutes later, cause unknown.

I tell the ICU to prepare a bed but I want to see her in the ED first. Twenty minutes later I put probe to patient and see a full IVC with spontaneous echo contrast. On that I tell the nurse to hold the fluids – there was a bag and tubing and a pump with 100ml/hr on it – and turn into a subxiphoid view to see a normal RV and a hypokinetic LV with some WMAs. She has marked consolidations  in both posterior lung fields and B lines laterally, with small effusions and dynamic air bronchograms (indicating patent airways). At this point she has a HR of about 120, but there is neither perceptible BP (by NIBP) nor saturation. She’s on levophed at 20mcg. She’s about an hour post arrest which was witnessed and brief (<10min to ROSC).

The theories about the arrest are possible hyperkalemia: she was intubated with succinylcholine before the K of 6.1 was back from the lab, and her pre-intubation pH was 7.0, and post-intubation she was only ventilated at 400 x 18, possibly precipitating a drop in pH and a rise in K. Her EKG had some nonspecific signs at this point, but also a poor anterior R wave.

So we head to the ICU, as instrumentation was needed. Cerebral saturation (SctO2) is 42% and ETCO2 is 20mmhg, which reassures me that the BP is probably in the measurable range (normal SctO2 is >60% and varies, but 47% is certainly viable)…  A jugular CVC with continuous ScVo2 and a femoral arterial line goes in:


So with a BP of 59/44 (ignore the 100/46, not sure whose arm that was on!) I start epinephrine, as the POCUS is similar, as I want some added beta-agonism. ScVO2 matches SctO2 in the 40’s. We get the BP up the the 90-1oo range, the ETCO2 goes to 30, the SctO2 and ScVo2 go up into the high 40’s, which is very reassuring, because with this I know that my epi drip is improving perfusion and NOT over-vasoconstricting. Without looking at a real-time tissue perfusion index of some sort or other, it is nearly impossible to know rapidly whether your therapy is helping or harming (will discuss tissue saturation & resuscitation monitoring in more detail in another post sometime soon).


So now the sat finally starts to record in the low 60’s. We have a PEEP of 5, so start bringing it up. We hit 16 before the BP starts to drop, and that only gets us to the mid 70’s sat%. She actually squeezes my hand to command.


At this point I take a few seconds to recap in my mind. I’d spoken to the husband briefly and she had had recurrent episodes of feeling unwell with headache, nausea and diaphoresis, and that had been out for dinner earlier and she felt fine until later in the evening when this came on and eventually brought her to hospital. There was also a notion of hypertension at an ER visit a couple of weeks ago. Her history was otherwise not significant. Nonsmoker.

Pheo? Maybe, but shock?  I repeat the EKG, and now, in I and AVL, there is perhaps a 1mm ST elevation. She’s 39 and essentially dying. Lactate comes back >15, pH 6.9.  I give her a few more amps of NaHCO3. You can see the BP respond to each amp. I decide we need to go to the cath lab and get the cardiologist on call to get on the horn with the interventional team at a nearby hospital with a cath lab and ECMO, which is what I think she needs. Hb comes back at 116, making that initial 49 that prompted 2 PRBCs probably a technical or lab error…very unfortunate. There are no visible signs of significant bleeding.

But back to the patient, because this isn’t really a transferrable case.

Recap: a 39yr old woman in cardiogenic shock AND in severe congestive heart failure exacerbated by fluids and packed red cells, with a PO2 in the 40’s and sat in the 70’s.

So I decide to prone her.


Along with draining tamponades, this had to be one of the most rapid and rewarding maneuvers I’ve done. There was a scry drop of sat to the 40’s for a few seconds (may have been a technical thing), but then within a few minutes: BP to the 130’s, SctO2 to 59% and sat 100%!




We dropped the vasopressors, the FiO2, and all breathed a collective sigh of relief. Now for the novices out there, prone ventilation improves VQ mismatch by moving perfusion from diseased, posterior lung fields to now-dependant, relatively healthy, anterior lung fields.

So transfer at this point was in the works. I planned to leave her prone until the last minute. The miraculous effect started to slowly wane within about 30 minutes, with sat and BP creeping down. At the time of transfer, we were back up to 80% FiO2.

So why is this?  Simple enough, this being simple pulmonary edema – rather than consolidated pneumonia – it migrated to dependent areas  relatively quickly. This was confirmed by a quick POCUS check:screen-shot-2017-01-05-at-10-48-06-pmscreen-shot-2017-01-05-at-10-48-26-pm

So in the still shots, you see a pristine “A” profile (normal, no edema) from the patient’s back, and a severe consolidation or “C” profile with ultrasound bronchograms in the antero-lateral (now dependant) chest. Impressive. (for those wanting some POCUS pearls see other posts and here). This is the reverse of her initial POCUS exam.

So we flipped her back and transported her – lights & sirens – the the cath lab, where they were waiting with ECMO cannulae. As an aside, it was quite refreshing to speak to the ICU fellow who spoke POCUS as well as french and english – it’s not usually the case, but I’m glad to see the change. I do believe it to be a direct effect of the influence of my friend and mentor, Dr. Andre Denault, one of the POCUS deities.

So she turned out to have a normal cath and a large adrenal mass. She did well on ECMO, being weaned off it today, and is now alpha-blocked and waiting for surgery, neurologically intact for all intents and purposes. A big thanks to the interventionists and the ICU team at the Montreal Heart Institute. Puts a smile on my face.


Take Home Points:

  1. don’t resuscitate without POCUS. I wouldn’t want anyone guessing with my life on the line, would you?
  2. keep pheo in mind as a cause of “acute MI” and shock
  3. if you’re not using some form of realtime monitor of perfusion (continuous CO, SctO2, ETCO2, ScvO2) then all you’ve got is looking at the skin and mentation, so you are essentially flying blind. Lactate and urine output are not realtime in real life.
  4. get ECMO in the house, it’ll come in handy. I’m working on it.


Love to hear some comments!





ps I’ll try to add more ultrasound clips from this case in the next few days.

Resuscitation Leadership Academy: Check it out!


Screen Shot 2015-09-18 at 11.05.26 AM

Screen Shot 2015-09-18 at 11.05.11 AM

Just wanted to invite everyone to take a look at the Resuscitation Leadership Academy (www.resuscitationleadership academy), brainchild of Haney Mallemat (@criticalcarenow) and Scott Weingart (@emcrit), neither of whom need an intro at this point, needless to say.  Much thanks to them for inviting me to the faculty, very honoured to be a part of the team!

Basically the RLA offers an online curriculum packed with great material, but more importantly the opportunity to do an online hangout with any faculty member and discuss cases, topics, etc, in an informal but very informative manner. I think this is a great resource for trainees as well as those who are in practice but either lack an academic environment or really just want to tap into some of these guys’ experience and knowledge.

Looking forward to meeting some of you in a hangout!



Cool stuff coming in 2015!

I gotta give a shout out to the #FOAMed world.  The last year and a half has been really stimulating, learning from and exchanging with an amazing cohort of peers, all striving towards self-improvement and saving a few extra lives. I’m also really thankful for all those who take a few minutes of their busy days to read or listen to some of the stuff I spew out, and truly appreciate comments and discussion.

Undeniably #FOAMed has made me a better doc, both from the standpoint of learning and inspiration, which is really the fuel behind continuing education. I’ve been involved in organizing events, and in fact, doing so, and the interaction with both the faculty and the participants has been, in and of itself, of immense worth in terms of motivation and a feeling of kinship to a like-minded group, which I think is very important to practicing physicians.

As a consequence of some of these #FOAMed introductions, some good things are in the planning stages for 2015.

Winter: check out BEEM january 26-28 out in Vancouver BC – I can’t make that but really wish I could.

Spring: Two really interesting events in collaboration with l’ASMIQ (Association des Specialistes en Medicine Interne du Quebec – Quebec internists), one being a half day on Shock & Resus (may 30th), and a full day on Lung Ultrasound (may 29th) featuring the grandfather of it all, guru Dr. Daniel Lichtenstein, the one who invented it (well…discovered it, technically). Both take place in Montreal. (Technically this is for ASMIQ members but if anyone is interested, let me know and I’ll see what I can do!)

Of course, CCUS 2015 takes place may 1-3 in Montreal. Can’t miss that. Register at http://www.ccusinstitute.org.

Summer? I’m not running anything, but definitely going to SMACC Chicago. Just go. ‘Nuff said. http://www.smacc.net.au.

Fall: Ken Milne (@TheSGEM) and I will be planning a really cool day combining a critical appraisal workshop and a review of acute care highlights, taking place in Montreal in the fall. Ken will teach us how to learn while being skeptical, and participants should leave with an important skill as well as a headful of practical knowledge. We don’t have a title for this yet but I’ll be sure to let you know! In the meantime be sure to check out Ken’s awesome stuff at http://www.thesgem.com. He keeps it real.



I’ve also been asked to organize an Ultrasound Simulation Workshop (we are doing an EchoSchockSim in CCUS 2015), which may also happen towards the end of the year.


conferences 2015

Ok, so that was just a bit of an update on what’s up in the next year. Hope to meet some of you at these events, do come and say hi!




ECMO for Cardiac Arrest: a big CHEER! #FOAMed, #FOAMcc

So a couple of years ago after hearing Scott’s interview of Joe Bellezzo and Zack Shinar (http://emcrit.org/podcasts/ecmo/) I figured this was the future, and promptly got a hold of these guys and got them to present at CCUS 2013 (link to Zack’s lecture below), where their lectures were mind-blowing and instantly made any resuscitationist green with envy, me included.

So just last month, two articles came out in Resuscitation which are highly pertinent and add a lot of legitimacy to the concept of ECMO for CA, one being the CHEER study by Bernard et al (CHEER Study) and the other, a very interesting canadian retrospective observational study by Bednarczyk et al (ecmo arrest canadian).



First, the CHEER study. Very well done, designed to combine ECMO, mechanical CPR and hypothermia, N=26, so not massive, but given the magnitude of the treatment effect, IMHO highly significant. Very good criteria (18-65, VF) so basically working with patients having a reasonable prognosis (aside from the cardiac arrest…), and their starting point was after 30 minutes of unsuccessful ACLS.

Now, for experienced clinicians out there, it is fairly obvious that at around 30 minutes, we start to get a little discouraged. Maybe not ready to throw in the towel, but we know things are looking dim. And most of those who do get a late ROSC don’t tend to do very well on the long term…

So it takes the CHEER team about 56 minutes to ECMO runtime.  Now, by 56 minutes of no-ROSC, most arrests would have been called. I think that is a key point to underline – the study essentially begins here, at a point where prognosis is no longer that 8-26% “quoted” survival, but pretty close to 0%.

So what happens? 54% of these patients survive to hospital discharge with good neurological recovery. Lets put this in perspective again. They bring back half the people we probably would have given up on…and discharge them home!!!  That’s crazy impressive.

This pretty much correlates with the experience of Zack and Joe (www.edecmo.com), who recently told me the story of a 20 year old diabetic with a K of 9.0 and an arrest of over 45 minutes. Discharge home a week or so later. Completely fine. Back on facebook and skyping with Zack & Joe.

That’s a humbling thing, because in my ED, my ICU, my hands, she’s a goner. 


The Canadian Perspective

Ok, so the Bernardczyk article is also really interesting, because it shows that this can be accomplished in a community hospital, and not necessarily only a tertiary care center, and their numbers (albeit retrospectively) are in the same ballpark.

And here is an awesome point of view from their discussion which I completely agree with and ascribe to:

“This (…) challenges our understanding of cardiac arrest as a terminal manifestation of a dis-ease process with treatment options fraught with futility. Rather, for selected patients, cardiac arrest may be better considered anexacerbating symptom of underlying disease with a therapeutic window to effectively restore perfusing circulation while providing definitive therapy.”



So one concern is with bringing back severely neurologically disabled patients. I think the CHEER, the canadian and the japanese data all pretty much refute this. ECMO, particularly paired with hypothermia (probably TTM style now), seems to have remarkable neuroprotective effects, despite prolonged low-flow states. I think we all rarely see patients with 40-50 minute range arrests showing CPC scores of 1…

So why might this occur?  Does the sudden flow reverse some of the vasoconstriction caused by the epinephrine?  I know from discussing with Joe that if they are thinking that the patient is going to ECMO, they will avoid epinephrine. Recent years have clearly shown that the improved ROSC of epinephrine comes at a cost of greater neurological damage, hence equivocal final result of intact neurological survival.


Bottom line?

If you’re a resuscitationist, get on board.  Its expensive, but no more than a bunch of other (sometimes dubious or dogmatic) things we do – and the data is there. I’ve been working on my (community) hospital and will not quit until we have it.

What do you need? A cooperating ER chief / ICU chief, and either a cath lab and a vascular surgeon in your institution or in a collaborating neighbourhood one.

…and some cojones.


Absolutely love to hear your thoughts, particularly from anyone with ECMO experience!

…this, of course, and more, at CCUS 2015!   http://ccusinstitute.org/Symposium7.html


cheers! (pun intended)



…and here is Zack at CCUS 2013:



Fluids and Vasopressors in Sepsis, Wechter et al, CCM Journal: Anything Useful? #FOAMed, #FOAMcc

A couple of articles on fluid resuscitation worth mentioning. Not necessarily for their quality, but because they will be quoted and used, and critical appraisal of the content and conclusion is, without a doubt, necessary to us soldiers in the trenches.

The first one, Interaction between fluids and vasoactive agents on mortality in septic shock: a multi-center, observational study, from the october issue of the CCM Journal (2014) by Wechter et al, for the Cooperative Antimicrobial Therapy of Septic Shock Database Research Group, is a large scale effort do shed some light on one of the finer points of resuscitation, which is when to initiate vasopressors in relation to fluids in the face of ongoing shock/hypotension.

So they reviewed 2,849 patients in septic shock between 1989 and 2007, trying to note the patterns of fluid and vasopressor therapy which were associated with the best survival.  They found that survival was best when combining an early fluid loading, with pressors started somewhere in the 1-6 hour range.  I do invite you to read it for yourself, it is quite a complex analysis with a lot of permutations.

So…is it a good study?  Insofar as a retrospective study on a highly heterogeneous bunch of patients, I think so. But can I take the conclusion and generalize it to the patient I have in front of me with septic shock? I don’t think so. In all fairness, in the full text conclusion the authors concede that this study, rather than a clinical game-changer, is more of a hypothesis generator and should prompt further study. That, I think, is the fair conclusion.

In the abstract, however, the conclusion is that aggressive fluid therapy should be done, withholding vasopressors until after the first hour.  This is somewhat of a concern to me, since it isn’t uncommon for some to just read that part…

So why is this not generalizable?  First of all, I think that the very concept of generalizing is flawed.  We do not treat a hundred or a thousand patients at a time, and should not be seeking a therapeutic approach that works best for most, but for the one patient we are treating. Unfortunately, this is the inherent weakness of any large RCT and even more so in meta-analyses, unless the right subgroups have been drawn up in the study design.

Let me explain.

Patient A shows up with his septic peritonitis from his perforated cholecystitis. He’s a tough guy, been sick for days, obviously poor intake and finally crawls in. If you were to examine him properly, you’d have a hard time finding his tiny IVC, his heart would be hyperdynamic, his lungs would have clear A profiles, except maybe for a few B lines at the right base. You’d give him your version of EGDT, and he’d do pretty well. A lot better than if you loaded him with vasopressors early and worsened his perfusion. Score one for the guideline therapy.

Patient B shows up with his septic pneumonia, also a tough guy, but happens to be a diabetic with a past MI. He comes is pretty quick cuz he’s short of breath.  If you examine him properly, he has a big IVC, small pleural effusions, right basal consolidation and B lines in good quantity. He gets “EGDT” with an aggressive volume load and progressively goes into respiratory failure, which is ascribed to his severe pneumonia/ARDS, but more likely represents volume overload, as he was perhaps a little volume responsive, but not volume tolerant. An example of Paul Marik’s “salt water drowning.” (http://wp.me/p1avUV-aD) Additionally he goes into acute renal failure, ascribed to severe sepsis, but certainly not helped by the venous congestion (http://wp.me/p1avUV-2J). If he doesn’t make it, the thought process will likely be that he was just so sick, but that he got “gold standard” care. Or did he?

It may very well be that the studied group may include more Patient A types, and less B types, whose worse outcome will be hidden by the “saves” of the As. If you have a therapy that saves 15/100 but kills 5/100 you still come out 10/100 ahead… Great for those 15, not so much for the 5 outliers.

We, however, as physicians, need to apply the N=1 principle as we do not treat a hundred or a thousand patients at a time. I would not hesitate to be much more conservative in fluid resuscitating a B-type patient, regardless of the evidence.

Unfortunately, until trials include a huge number of important variables (an accurate measure of volume status, cardiac function, capillary leak, extravascular lung water, etc), it will be impossible to extrapolate results  to an individual patient.  These trials will, I suppose, eventually be done, but will be huge undertakings, and I do look forward to those results.

So, bottom line?

It’s as good a study of this type as could be done, but the inherent limitations make it of little clinical use, unless your current practice is really extreme on fluids or pressors. What it will hopefully be, however, is an onus to do the highly complex and integrative trials that need to be done to determine the right way to treat each patient we face.







Lawrence Lynn says:

Excellent post. This thoughtful quote should be read and understood by every sepsis trialists!!

“We do not treat a hundred or a thousand patients at a time, and should not be seeking a therapeutic approach that works best for most, but for the one patient we are treating.”

This single quote exposes the delay in progress caused by the ubiquitous oversimplification which defines present sepsis clinical trials. Bacteria (and viruses) generate “extended phenotypes” which are manifested in the host. These phenotypes combine with the phenotypic host response to produce the range of “dynamic relational hybrid phenotypes of bacterial and viral infection”. These hybrid phenotypes are also affected by the innoculum and/or the site of infection (vis-à-vis, your example of peritonitis).

Certainly Wechter et al and the Cooperative Antimicrobial Therapy of Septic Shock Database Research Group should be commended for beginning the process of moving toward the study of the dynamic relational patterns of complex rapidly evolving disease and treatment.

We are excited to see the beginning of the move of trialists toward the study of dynamic state of disease and treatment. However, before they can help us with meaningful results, trialists will need to study and define the range of “the dynamic relational phenotypes of severe infection” and then study the treatment actual phenotypes. This will not be easy as these organisms have had hundreds of thousands of years of evolution writing the complex genotypes which code for the extended of human infection. Sepsis trailists need to be encouraged by clinicians to rise to the task.

The clinicians must actively teach the trialists, (as you have in your post) that we expect trails which help to identity the therapeutic approach that works best in response to the dynamic hybrid phenotype “we are treating”.

The two linked articles below explain the present oversimplified state of the science of sepsis trails and why we clinicians must teach the trailists not to oversimplify and assure that they move quickly toward the study of the actual dynamic phenotypes of severe infection.



This is a paradigm shift so we, as clincians, must act to teach trailists this move is necessary. Otherwise we will continue to be left with hypotheses, which, while nice, are not useful at the bedside.

Lawrence Lynn



Another plea. Please stop embarassing us. #FOAMed, #FOAMcc.

Despite physiological rationale, common sense, and a JAMA article now almost 2 years old, I still sadly see most of my internal medicine colleagues still routinely reaching for (ab)normal saline.

Its embarrassing.

I genuinely feel bad recommending other fluids in consultations, or in the room of a crashing patient asking the nurse to stop the bolus of NS and change it at least to RL, because it is such a ‘basic’ intervention. Prior to the JAMA article, I mostly gave people the benefit of the doubt. Resuscitation isn’t everyone’s field of interest, nor is physiology, so I didn’t feel that necessarily everyone HAD to know this and ascribe to it. I do understand the 10 year time of knowledge translation, but that’s why #FOAMed exists, to try to cut that down.

So please, unless your goal is specifically chloride repletion, take a deep breath and release your grasp on habit and tradition, and embrace physiology (at least to some degree) and stop using NS as a volume expander whether in bolus or in infusion. RL or plasmalyte – although not physiological, at least not as biochemically disturbing as is 0.9% NaCl.

Having said that, let’s keep in mind that human fluid is colloid, whether it includes a cellular suspension (blood, lymph) or not (interstitial fluid), made of a varying mix of proteins, electrolytes, hormones and everything else we know – and some we don’t – floating around. There is no compartment that contains a crystalloid solution.

I’m quite aware that no meta-analysis has shown that colloids are superior, but it likely is just a matter of the right colloid. Resuscitating with crystalloids is kinda like throwing a bucketful of water at an empty bucket across the room. 70-80% spill, if you’re lucky. And the cleanup may be more costly than a few sweeps of the mop. This is evidence based (SOAP, VASST, etc..).

So a plea to all, spread the word. Its a simple switch. Boycott hyperchloremic acidosis at least.

For more details, here’s a link to my earlier post on NS: http://wp.me/p1avUV-5x




Bedside Ultrasound Clip Quiz: Abdominal pain and fever! #FOAMed, #FOAMcc, #FOAMus

Saw this poor fellow recently who presented to the ED with fever and abdominal pain. 73 years young. He came to my attention because of borderline BP (95 systolic) and a lactate of 4.5 mmol.

Here is a transverse scan at his lower right costal margin:


What do you think?

Turns out he had been having pain for about two weeks, and it had intensified about two days ago. His wife dragged him in.

What would you do?












This is septated fluid collection around the liver.  With the fever and history, sounds pretty suspicious for a septic source. After carefully scanning in all angles and watching for a while to make sure this wasn’t a strangely placed loop of bowel, a 22g needle aspiration showed cloudy bilious fluid and a trip to the OR a couple of hours later revealed a perforated duodenal ulcer.

He made it ok.