Bedside Ultrasound Quiz Part 1: a 50 yr old man with dyspnea, acidosis, hepatitis and leg edema. #FOAMed, #FOAMer, #FOAMus

So last night, an interesting call from the ED about a 50 year old man who presented with a 3 week history of increasing dyspnea, leg edema, temp of 39,  a lactate of 3.9, an INR of 1.7, elevated LFTs and a WBC of 18, but a BP of 130/75.

Fortunately, I was dealing with a saavy ER doc with some POCUS capabilities, so he also told me he saw a pretty big IVC and he was a bit leery about giving fluids, though this looked like pretty severe sepsis with 3 or 4 affected organ systems…

So I asked him to hold fluids until I got there. Here is what POCUS found:

He revealed a past history of untreated hypertention, and a flu-like illness 3-4weeks ago.

What’s the diagnosis (-es) and management?

Answers & Clinical evolution in part 2 tomorrow!

 

cheers

 

Philippe

 

 

 

 

 

 

 

 

Bedside Ultrasound Clip Quiz! A 72 year old man with fever, weight loss and tachycardia. #FOAMed, #FOAMcc, #FOAMer

So a 72 year old man is brought to the ER after collapsing at home. His family had noted weight loss in the last months, and recently some fever and general weakness.  His HR is 108, T 38.8, BP 80/40, GCS 14 – somnolent – he is in lactic acidosis (4.5) and renal failure (cr 180 – baseline 120), with some vague abdominal pain, a clear chest and warm extremities.

POCUS shows a normal IVC, normal RV/LV, A profile lungs, no ascites, and this on the left flank:

 

What is the main diagnosis?

Scroll below for the answer:

 

 

 

 

 

 

 

 

 

So the clip shows fairly severe hydronephrosis, the “bear paw” with very dilated calyces.  The patient was suffering from obstructed pyelonephritis due to massive retroperitoneal adenopathy later found to be lymphoma.  A couple of hours later he got a nephrostomy tube to take care of the septic source (double J could not pass) and his sepsis resolved within a few days, and he headed off to chemo for the NHL.

The advantage of POCUS here is. once again, the speed of diagnosis. He went straight from CT to the readied urologists and source control happened within a couple of hours. His relatively benign abdomen may not have prompted a rapid CT otherwise.

See here for more POCUS!

cheers!

 

 

Philippe

Musings with Jon-Emile & Philippe – Fluid Resuscitation: Physiology and Philosophy! #FOAMed, #FOAMcc, #FOAMer

So here, Jon-Emile and I explore a topic I’ve posted about before (http://wp.me/p1avUV-bd) so I can see if a master physiologist agrees with my rationale (…not just my rationale but supported by a ton of literature many choose to overlook!).

Please visit http://www.heart-lung.org for Jon’s awesome physiology tutorials!

Love to hear listeners’ thoughts!

cheers

 

Philippe

The Great Septic Debate (Part 2): Resolution? #FOAMed, #FOAMcc

So, echoing my thoughts form the end of the debate, Steven adds:

Well, I didn’t expect to see my name in a headline, but I suppose it’s a hazard one should expect when they go spreading their arguments across the interwebs!

In truth, I don’t think that Dr. Lynn and I really think that much differently on these issues. We both desire for the science of sepsis to continue developing and to be better than it is. I, personally, would love to be a part of the clinical trials that use genome-based data to determine which treatment arm a patient belongs in. We both deplore any “old guard” attempting to prevent the onward march of discoveries that make our knowledge and abilities more complete. I am actually sorry that some young scientists feel intimidated and that there is anything less than civility and scientific curiosity in our community. Period.

Likewise, I would be shocked if Dr. Lynn did not at least use the observation of infection, SIRS, and organ dysfunction as physical markers of sepsis and warning signs that intervention is necessary. It will be true for a very long time that it is going to be an interaction between two human beings that initiates the diagnosis and treatment of sepsis. A physician will recognize a patient in distress by some means and start the process. For now, these findings are the best we have, and they should prompt us to intervene before the completely diagnostic test results are available. Even when we have the tricorder, something is going to trigger the doc to pull it out of a pocket and use it.

OK, so I have to admit that Dr. Lynn stung me a little with his characterization of TNF-alpha as a “biomarker”. I would rather say that TNF is one of the heavy hitters in the proteomics of sepsis, and I’ll bet that I can get him to concede that point! It stimulates receptors and causes other actions to take place, it’s synthesis and release are regulated and dysregulated; it’s more than just a marker! And I ABSOLUTELY agree that the failure of TNF-directed therapies stems from the fact that they were given both to patients who could benefit from them and patients who, with better characterization, we would have known had no chance of benefitting. The same goes for high dose corticosteroids, anti-endotoxin antibodies, IL-1 directed therapies, and coagulation based therapies. In fact, that’s what I’ve been teaching my trainees for years – if you can call bemoaning the fact that we can’t yet recognize and separate responders from non-responders teaching. We have a desperate need for understanding better, and the science MUST be encouraged. Again, period. Or full stop, for those of you who have that bent! That is, I think, Dr. Lynn’s argument in a nutshell.

I REALLY appreciate the interchange. It is healthy and necessary. The two of us are aiming at the same thing – fewer people dying from sepsis. I haven’t met Dr. Lynn (though I hope to), but I suspect that he spends more hours in his day formulating and doing the new science, while I spend more hours in my day pushing people who think that it isn’t sepsis until it’s shock and multiple organ failure to do something about it before it gets that far. Those are both important parts of the war, but in the end, it is the same war. And we are allies in it.

Steven Q Simpson

And, soon after, Lawrence reaches for that handshake:

I agree completely with Dr. Simpson. We all teach that a good history, physical, basic lab, and a high degree of vigilance for subtle signs of sepsis are pivotal. This includes the use of awareness campaigns which simplify sepsis to something easily understood and screening protocols to assure vigilance. These are great advances.

I also share Dr. Simpson’s concern about empowerment of naysayers who may use the promulgation of the imperfections of sepsis science as a reason not to move forward with early action based detection protocols.

Relevant TNF-alpga, I have to agree that it likely has a fundamental role in some phenotypes of sepsis including the sepsis-like syndrome generated in Ebola patients.

So Dr. Simpson and I probably agree on most sepsis related issues.

To explain a little further, many years ago our research team applied for an NIH grant to define the dynamic relational patterns of all the lab and vitals over time in infected patients. The reviewers did not seem to comprehend why we wanted to do that since a standard for a single unified phenotype of sepsis was already widely accepted. Yet had they realized the need for these types of complete data sets, the entire time time series matrix of vitals, lab, biomarkers, and treatment for each case would have been acquired in PROcess , ARISE, and Promise. This would have occurred if the entire field of scientists had not convinced themselves they already knew that “sepsis/septic shock ” comprised a unified phenotype, “an entity” “a single condition” “a thing or object” definable by a few static thresholds.

So this is why we say the young should call for reform ASAP of sepsis science (not sepsis awareness) and at the upcoming SCCM. Imagine a mult-center trial where these complete time matrices are generated and we define the phenotypes. We can define the phenotypic subtypes and then examine treatments in relation to these.

One might think of sepsis syndrome as analogous to the syndrome of CHF where there is systolic failure, diastolic failure, hypertensive failure, and valvular failure defined phenotypes of CHF.

Perhaps we might have sepsis with capillary membrane failure phenotype and/or, vascular muscle failure phenotype, coagulation control failure , neutrophilic control failure, TNF-alpha mediated immune control failure.

These are simply general gross simplistic considerations, Discussion points.

However the final conclusion of my original post is that, beginning at this SCCM, we must stop trying to explain away the anomalies caused by the past sepsis dogma and accept that these anomalies ARE counter instances. We must accept that we cannot rely on research which uses billing codes as data or by using retrospective controls at the same time the denominator balloons as a function of awareness.

Then we can finally assure that we do not fool ourselves because the world depends only on us. There is no back up. We must accept that we need a new surge of sepsis research ASAP, and…..in a new direction.

This, along with the effort and dedication of Dr. Simpson team, the Sepsis Alliance, and the SSC (now gathering the entire time series matrix of all the diagnostic and treatment data and not just thresholds) will produce an exciting future. If this happens, it would be great to be a young sepsis scientist in 2015.

So yes Dr. Simpson and I actually agree. We are simply fighting the war on sepsis from different fronts.

Most Respectfully
Lawrence Lynn

Thanks again Steven and Lawrence for what I think was both a really informative AND formative discussion.

Philippe

Limited EGDT in Zambia Study: Salt Water Drowning Syndrome… #FOAMed, #FOAMcc

So in this month’s issue of Critical Care Medicine, an interesting article was published, where investigators took a (necessarily) simplified version of EGDT to Zambia and applied it to septic patients. It turned out they had to stop it early due to an excessive number of cases of respiratory failure in the treatment group.  The difference was – you guessed it – they got “aggressive” volume resuscitation – up to 4l in the first 6 hours – guided by JVP assessment, and blood and dopamine if needed.

Simplified_Severe_Sepsis_Protocol___A_Randomized.1

The amounts received by 6, 24 and 72h were 2.9, 3.9 and 5.6 l for the treatment group vs 1.6, 3.0 and 4.3 l.

Now lets keep in mind that the patients, for the most part, did not have access to critical care, so the limited resources for ventilatory support made stopping the trial a bit early the only reasonable thing to do. Mortality in the treatment group was 64% and control 60%. High numbers, but this is explained in part by the prevalence of HIV (80%) and TB (37% of the HIV positive patients), so this data can’t necessarily be extrapolated to all populations, but to me, this is physiological support for the concept that aggressive fluid resuscitation – as I have stated in prior posts/podcasts – is most dangerous in those patients where the septic source – presumably “leaky” is ill-equipped to handle extra-physiological fluid.  In these patients, as Myburgh states in a sepsis talk, “noradrenaline is the fluid of choice,” and although perhaps a bit tongue in cheek, this certainly speaks to my beliefs of resuscitating to euvolemia rather than to the lack of volume responsiveness (http://intensivecarenetwork.com/myburgh-john-beta-blockers-and-sepsis/).

Additionally, these patients were not hypotensive, and lactate was not available – local limitations of medical system. Hence the definition of severe sepsis triggering aggressive fluid resuscitation was based  on SIRS type criteria, rather than some form of volume assessment.

 

Bottom line?

Be cautious in aggressive fluid administration in pulmonary sepsis. What, I really dislike when people say “be careful” or “be cautious,” because let’s face it, that doesn’t really mean anything, does it?  It doesn’t tell you what to actually do… We are frontline clinicians, so I’ll say to limit fluid resuscitation in pulmonary sepsis.  2 litres up front?  Probably ok so long as I have a varying, mid-size IVC (maybe 10-15mm – arbitrary and chronic pulmonary disease and hypertension have to be factored in) and a decent heart, but I don’t want to get to the point of no longer being fluid-responsive. Rather, go to pressors a bit earlier, perhaps, and no need for ongoing “maintenance” fluids at 100-150 cc’s an hour – remember that 80% of this wonderful therapy ends up where we don’t want it to.

 

cheers!

 

Philippe

PS for awesome talks by amazing speakers, don’t forget to register for CCUS 2015!!! For more info: http://wp.me/p1avUV-aU and register at http://www.ccusinstitute.org

Fluid Responsiveness: Getting the right answer to the wrong question. #FOAMed, #FOAMcc, #FOAMus

Let me start with a clinical scenario: you have a 68 year old male in front of you who is intubated, has bilateral pleural effusions, pulmonary edema, a bit of ascites, significant peripheral edema, elevated CVP/JVP/large IVC, and a moderately depressed cardiac function.  What is the diagnosis?

If you said CHF, you might be right. If you said post-resuscitation state in a septic patient, you might equally be right. Hmmm….

So as any self-respecting FOAMite knows, there is an ongoing and endless debate about fluid responsiveness, how best to detect it, what exact percentage of some variation represents it – is it 9% or 13% – and everyone has the way they swear by.

Well, I think the entire premise behind this is essentially flawed.

The fact that this is the first question implies that the answer should radically change management (eg giving or not giving fluids “generously” – yes, the quotes imply facetiousness).  Basically, that you should stop giving fluids when your patient is no longer fluid-responsive. The implication is that fluids is a better, safer, healthier, more naturopathic, eco-friendly and politically correct therapy than any other option.

I think we should reflect on that a little.

If you put some faith into normal physiology, you have to acknowledge that the only situations in which our cardiopulmonary system finds itself nearly or no longer fluid responsive are pathological: CHF, renal failure, etc. None of those are healthy. None of those are a bridge to healing.

What do we do when we are hypovolemic?  We vasoconstrict, stop peeing, try to drink a bit (if at all possible) and slowly replete our intravascular space via the portal system. We might build up a little lactic acid (helps feed the heart and brain – yup, nothing toxic about it), but we get over it.  Of course, if we lose too much, the system fails and we head to meet our maker.

Now, having remembered that, why do we feel (and I say feel because the evidence isn’t there to back it up) like we have to get to pathological levels of intravascular venous pressure to fix the problem?  Especially when the problem at hand isn’t primarily hypovolemia, but mostly vasodilation, with possibly a relative hypovolemia in part related to increased venous capacitance.

The real question is: does my patient really, truly need a lot of fluid?

And here is the catch: just because someone is fluid responsive doesn’t mean that they need any, or that it is the best thing for them. Whoa… Heretic… I thought “aggressive fluid resuscitation is the cornerstone of resuscitation in sepsis.

I think that answer is relatively simple.

No matter which method you are using (mine is IVC ultrasound: -https://thinkingcriticalcare.com/2014/04/01/the-ivc-assessment-by-bedside-ultrasound-lets-apply-some-common-sense-foamed-foamcc/), if you are deciding based on a millimetre of diameter, or a couple of percentage points of variation whether or not to give liters of crystalloids to your patient, there is no truth to that in the individual patient. Trying to figure out the tiniest of differences to decide our therapeutic options is, in my opinion, a huge waste of time with no scientific basis in the one single patient you are treating.   It’s like haggling for a dollar on a hundred dollar item in a flea market: you’re missing the boat.

“85% of patients with a IVC/SVV/SPV/PLR of …. are volume responsive” or something of the sort does NOT apply to the one patient you have in front of you as a recommendation for fluids. You have to make a complete clinical picture of it – feel the belly, look at the inspiratory effort, examine the tissues for edema, etc.

Grey zone it. The best we can do is a gross categorization of truly hypovolemic (need a lot), full (please don’t give me any), and “normal” which may need maybe a little, but probably not “generous” amounts. You’ll end up generously feeding the interstitial space and making things worse – and later maybe saying “oh well, I guess he/she was just so sick…”

Even if my patient is fluid-tolerant, why to we want to push him into near-pathological states? Is it just the old adage of “You have to swell to get well?”  In the light of much of our literature, I’m not sure that old wives’ tale holds a lot of water.

Are vasopressors that bad?  Not according to what we know…

At least, avoid actually reaching the point of no longer being fluid responsive. You can’t tell me you think that CHF is actually a good thing, can you?

 

Love to hear your thoughts!

 

Philippe

PS, if you like to think out of the box and rather be on the cutting edge, make sure to mark your calendar for the coolest conference in Canada: #CCUS2015….http://wp.me/p1avUV-bh

 

 

COMMENTS

SQS Replies:

Philippe,
I think your logic is sound enough, but the moat that makes it currently unassailable is that you are working in an area with no or very little data. There is clearly a reasonably well developed and continuing to develop literature around the mortality effects of excess volume. There is an older literature that suggests that our vasopressors are actually having their effect on the more normally functioning arterioles and may shunt well oxygenated blood from the well functioning cells of a tissue and to the ones that are shocked and can’t use the oxygen, anyway. At this juncture, your guess is as good as mine, as to which of these is the greater evil. Ergo, your argument is as good as any.

One thing I will say is that the patients who concern us are those in whom endotoxin, blood loss, or other factors have resulted in a shock state wherein cells and even large parts of tissues have both inadequate oxygen supply and inadequate ability to use whatever oxygen is supplied them. Any tool we have to alter this pathological state is blunt. Blood pressure? CVP? IVC size and behavior? SVI? What do any of these say about how well we are doing at the tissue and cellular level? Even the interesting markers of lactate, ScvO2, CV CO2, etc. are blunt instruments. As is our bag of fluid and as are our vasopressors. And think about our end result – “hemodynamic stability”, “better mental functioning”, “good urine output”, “feeling better”, “walking around”, “able to go back to work”. Things that are important to us and to our patient, but barely even measurable. How blunt are they?

My own approach, which I suspect to be yours, too, is to recognize that the new onset shock patient is momentarily different from the chronic CHF patient/”chronic” shock patient you describe above. We know there is an oxygen deficit, and it behooves us to correctly that as quickly as we can. We believe, with some data to back us up, that rapid correction of that deficit, to the extent that we can, can prevent the ugly chronic state. I use the blunt measures of fluid responsiveness in the first hour or two of resuscitation to ensure that the CO component of oxygen delivery is not deficient, and then I stop giving fluid. Early in the course, I am prone to rechecking “volume responsiveness” in some hours, because I know that fluid is leaching out of the vascular space and the patient has not stabilized, yet. All the while, I am highly aware that I am hoping this makes a difference, not knowing that it does. I am aware that it is rather circular to check SVI or IVC, give fluid, see a change and say, “See? Volume responsive.” And all the while knowing that every patient has his or her own line, beyond which more fluid will not be helpful but harmful. And all the while knowing that I can’t see that line, nor measure it with any tool that currently exists.

I think perhaps that we are like Phoenicians, navigating our way across the ocean by the North Star and trying to keep land in sight. We do a pretty good job of getting where we’re going a lot of the time. But won’t it be nice when we come up with GPS? Or even the astrolabe?

SQS

 

Fantastic points!

I can’t agree more. I do check for fluid responsiveness, and I do believe in rapid intervention – just perhaps not quite a vigorous and generous as medical marketing would have us buy. There isn’t more data for that than for a somewhat more conservative approach, in my opinion. Even the rate of administration is rarely looked at, just the totals. There is good animal data showing that, for instance, a more rapid rate of albumin infusion results in greater leak and less intravascular albumin at 6, 12 and 24 hours.  Little reason to think it would be any different in humans.  There is also data showing that the oxygen deficit in sepsis is not as ubiquitous as we think.

Our understanding of the septic disease state is minimal at best, and our tools exceedingly blunt, as you point out.  

GPS or astrolabe would be amazing. I’ve had a few discussions with people working on cytochrome spectroscopy – a possibility to assess mitochondrial “happiness,” which could give us an oxygenation endpoint. Then we could have a trial that might end up showing which degree of mitochondrial oxygenation is optimal, if any.

I know I am playing a bit of a devil’s advocate and that, in strict numbers, I probably don’t give a lot less fluid or a lot slower than most, but I think it is important to keep our minds open to change rather than keep a clenched fist around the ideas we have. 

When we have two docs debating whether IVC, SVV, carotid flow time (I do like Vicki’s stuff a lot) or something else, I think we are mostly in the grey zone, and the good thing is that either way, we are dealing with two docs who are aware and conscientious and doing the rest of the right things. But keep in mind there are a lot of docs out there who are in the acute care front lines who believe that bicarb “buffers” lactate. And by buffers they understand “neutralizes.”

I just hope that when the GPS comes along, we don’t lose ten years of knowledge translation time because we are still clinging to (at that point) outdated ideas like the IVC ultrasound… 😉

cheers and thanks so much for contributing fantastic material!

Philippe

Marco says:

Philippe, I really feel like being on your same wavelength when I read your posts about fluid responsiveness. I think it’s obviously easy to agree that a bleeding hypovolemic patient is fluid responsive AND needs fluids, but the more accurately I think about the physiology of fluid resuscitation when a nurse is asking me “should we give him some fluids?” the more I realise that the “grey zone” is large and its upper limit is not easily detectable. Probably if you fill your patients to the point where they are no more fluid responsive, you are sure that no more fluid is needed, but you should be able to stop a bit earlier.
Blunt instruments and measures are an issue, and integration of the data is a possible solution (at least until a GPS comes along), but critical thinking is always a valuable resource.
The more I grow old the more I become minimalist in my approach to the “chronic acute ill” patient (90% of the patients on an ordinary day in my ICU). If a patient is in the grey zone, with a reasonably good hemodynamic stability, some vasopressor support, low dose diuretics and his urine output decreases, probably the decision of giving him fluids OR diuretics would be equally harmful. When a patient is in the grey zone and your instruments are not so accurate, it’s better to keep him safely in the grey zone. When you are in the mountains, you are caught in a snowstorm and cannot find your tracks, the safest decision is to stop and wait.. or follow your GPS 😉

Marco

thanks!

You hit the nail on the head with “integration is key.

Philippe

Fluids and Vasopressors in Sepsis, Wechter et al, CCM Journal: Anything Useful? #FOAMed, #FOAMcc

A couple of articles on fluid resuscitation worth mentioning. Not necessarily for their quality, but because they will be quoted and used, and critical appraisal of the content and conclusion is, without a doubt, necessary to us soldiers in the trenches.

The first one, Interaction between fluids and vasoactive agents on mortality in septic shock: a multi-center, observational study, from the october issue of the CCM Journal (2014) by Wechter et al, for the Cooperative Antimicrobial Therapy of Septic Shock Database Research Group, is a large scale effort do shed some light on one of the finer points of resuscitation, which is when to initiate vasopressors in relation to fluids in the face of ongoing shock/hypotension.

So they reviewed 2,849 patients in septic shock between 1989 and 2007, trying to note the patterns of fluid and vasopressor therapy which were associated with the best survival.  They found that survival was best when combining an early fluid loading, with pressors started somewhere in the 1-6 hour range.  I do invite you to read it for yourself, it is quite a complex analysis with a lot of permutations.

So…is it a good study?  Insofar as a retrospective study on a highly heterogeneous bunch of patients, I think so. But can I take the conclusion and generalize it to the patient I have in front of me with septic shock? I don’t think so. In all fairness, in the full text conclusion the authors concede that this study, rather than a clinical game-changer, is more of a hypothesis generator and should prompt further study. That, I think, is the fair conclusion.

In the abstract, however, the conclusion is that aggressive fluid therapy should be done, withholding vasopressors until after the first hour.  This is somewhat of a concern to me, since it isn’t uncommon for some to just read that part…

So why is this not generalizable?  First of all, I think that the very concept of generalizing is flawed.  We do not treat a hundred or a thousand patients at a time, and should not be seeking a therapeutic approach that works best for most, but for the one patient we are treating. Unfortunately, this is the inherent weakness of any large RCT and even more so in meta-analyses, unless the right subgroups have been drawn up in the study design.

Let me explain.

Patient A shows up with his septic peritonitis from his perforated cholecystitis. He’s a tough guy, been sick for days, obviously poor intake and finally crawls in. If you were to examine him properly, you’d have a hard time finding his tiny IVC, his heart would be hyperdynamic, his lungs would have clear A profiles, except maybe for a few B lines at the right base. You’d give him your version of EGDT, and he’d do pretty well. A lot better than if you loaded him with vasopressors early and worsened his perfusion. Score one for the guideline therapy.

Patient B shows up with his septic pneumonia, also a tough guy, but happens to be a diabetic with a past MI. He comes is pretty quick cuz he’s short of breath.  If you examine him properly, he has a big IVC, small pleural effusions, right basal consolidation and B lines in good quantity. He gets “EGDT” with an aggressive volume load and progressively goes into respiratory failure, which is ascribed to his severe pneumonia/ARDS, but more likely represents volume overload, as he was perhaps a little volume responsive, but not volume tolerant. An example of Paul Marik’s “salt water drowning.” (http://wp.me/p1avUV-aD) Additionally he goes into acute renal failure, ascribed to severe sepsis, but certainly not helped by the venous congestion (http://wp.me/p1avUV-2J). If he doesn’t make it, the thought process will likely be that he was just so sick, but that he got “gold standard” care. Or did he?

It may very well be that the studied group may include more Patient A types, and less B types, whose worse outcome will be hidden by the “saves” of the As. If you have a therapy that saves 15/100 but kills 5/100 you still come out 10/100 ahead… Great for those 15, not so much for the 5 outliers.

We, however, as physicians, need to apply the N=1 principle as we do not treat a hundred or a thousand patients at a time. I would not hesitate to be much more conservative in fluid resuscitating a B-type patient, regardless of the evidence.

Unfortunately, until trials include a huge number of important variables (an accurate measure of volume status, cardiac function, capillary leak, extravascular lung water, etc), it will be impossible to extrapolate results  to an individual patient.  These trials will, I suppose, eventually be done, but will be huge undertakings, and I do look forward to those results.

So, bottom line?

It’s as good a study of this type as could be done, but the inherent limitations make it of little clinical use, unless your current practice is really extreme on fluids or pressors. What it will hopefully be, however, is an onus to do the highly complex and integrative trials that need to be done to determine the right way to treat each patient we face.

 

thanks!

 

Philippe

 

COMMENTS:

Lawrence Lynn says:

Excellent post. This thoughtful quote should be read and understood by every sepsis trialists!!

“We do not treat a hundred or a thousand patients at a time, and should not be seeking a therapeutic approach that works best for most, but for the one patient we are treating.”

This single quote exposes the delay in progress caused by the ubiquitous oversimplification which defines present sepsis clinical trials. Bacteria (and viruses) generate “extended phenotypes” which are manifested in the host. These phenotypes combine with the phenotypic host response to produce the range of “dynamic relational hybrid phenotypes of bacterial and viral infection”. These hybrid phenotypes are also affected by the innoculum and/or the site of infection (vis-à-vis, your example of peritonitis).

Certainly Wechter et al and the Cooperative Antimicrobial Therapy of Septic Shock Database Research Group should be commended for beginning the process of moving toward the study of the dynamic relational patterns of complex rapidly evolving disease and treatment.

We are excited to see the beginning of the move of trialists toward the study of dynamic state of disease and treatment. However, before they can help us with meaningful results, trialists will need to study and define the range of “the dynamic relational phenotypes of severe infection” and then study the treatment actual phenotypes. This will not be easy as these organisms have had hundreds of thousands of years of evolution writing the complex genotypes which code for the extended of human infection. Sepsis trailists need to be encouraged by clinicians to rise to the task.

The clinicians must actively teach the trialists, (as you have in your post) that we expect trails which help to identity the therapeutic approach that works best in response to the dynamic hybrid phenotype “we are treating”.

The two linked articles below explain the present oversimplified state of the science of sepsis trails and why we clinicians must teach the trailists not to oversimplify and assure that they move quickly toward the study of the actual dynamic phenotypes of severe infection.

http://www.ncbi.nlm.nih.gov/pubmed/24834126

http://www.ncbi.nlm.nih.gov/pubmed/24383420

This is a paradigm shift so we, as clincians, must act to teach trailists this move is necessary. Otherwise we will continue to be left with hypotheses, which, while nice, are not useful at the bedside.

Lawrence Lynn