Fluid Stop Points! More POCUS goodness from Korbin Haycock. #FOAMed, #FOAMcc

I am really enjoying this exchange, and I think it is in the true spirit of #FOAMed to foster these discussions, as we have the opportunity to combine and fine tune our understanding of a topic from several really bright people’s view and experience. 

Korbin:

Jon-Emile, excellent points and insight. I should clarify a couple of my comments. To be specific, by “renal vein flow” I am referring to intra-renal venous flow. Apologies for my imprecision! Thanks for pointing that out.

Yes, a lot of these renal and portal Doppler patterns are surrogates of CVP. But I don’t think any of us would use CVP in isolation these days to make any decision what-so-ever on whether fluids were indicated in our patient.

Also, to clarify, I am not using intra-renal venous flow or renal resistive index as measures of non-fluid responsiveness. Rather, I use these measures as a stop point for attempting to solve the patient’s hemodynamic dysfunction with crystalloid regardless of whether or not my straight leg test tells me the patient is still fluid responsive.

And that is a key re-iteration to me. It is important to set these stop points and not only look at whether the cardiac output can be maximized. This has been tried. And failed. Let’s remember that sepsis is not inherently a disease of low flow. It isn’t cardiogenic or hypovolemic shock at the core.

My rationale for the strategy of using intra-renal Doppler, E/e’, and Lung US (now, I can include portal vein pulsatility) as a stop point for IVF administration is that I think the patient is best served to avoid iatrogenic edema of the upstream organs, primarily the lungs and the kidneys. These are the two organs (maybe you could put the endothelium in this category as well–glycocalyx being a whole other can of worms!) most easily damaged by the chase for optimizing every bit of fluid responsiveness. We have good evidence that getting wet lungs and swollen, congested kidneys is a bad thing, and we have these tools to hopefully warn us when we are pushing things too far.

Absolutely. And the whole glycocalyx is something to keep in mind, even if only to me mindful to disrupt it as little as possible.

Of course renal resistive index, intra-renal venous flow, portal vein pulsativity, and whatever else you like will have limitations and confounders. As long as you understand what can cause abnormalities with these tools, you can make an educated guess as to what’s going on. If our creatinine is off and our RRI is high, but intra-renal venous flow and portal vein flow is normal, perhaps the RRI is caused by something other than renal congestion, like ATN. If the portal vein is pulsatile, but the Doppler patterns of the hepatic vein, kidney and the heart look ok, maybe something else is wrong with the liver. But, if all our modalities are in agreement and pointing to congestion, we should perhaps believe that it’s congestion and stop the fluids. 

That is an awesome approach to integrating RRI. I’ve been toying with it for the last couple of days, and much thanks to Korbin, I think that the limitations of RRI can be overcome by using the rest of our clinical and POCUS data.

It isn’t a hard technique, though in some patients getting a good signal can be tricky.

I think that the kidney, being an encapsulated organ, and the fact that much of our crystalloid ends up as interstitial edema, the kidney will develop sub-optimal flow patterns before CVP would cause congestion. The same is true regarding the lung, except that it’s just related to increased pulmonary permeability due to inflammation. Regardless, the idea is to save organs, and the earlier you can detect the problem, the sonner you can stop battering the more delicate organs with fluid.

As I think we have all mentioned, you really have to look at the whole picture, and put it together to tell the story of what is wrong, so we can logically and thoughtfully treat our patients.

I really appreciate this discussion. Thanks!

 

 

Thanks to Andre, Jon and Korbin for making this very educative for all!

Cheers

 

Philippe

 

ps don’t miss the POCUS Workshops on venous assessment at  !!!

Portal Vein POCUS: A Reader’s Case and a Follow-Up to the Denault Discussion

So I’ve been meaning to post a follow up and discussion about portal vein POCUS and how I am integrating it so far, and a few days ago I got a really interesting comment from Dr. Korbin Haycock, and I think it’s got some awesome elements to discuss.

Before we get into it, I would invite anyone reading this to go listen to the original Denault Track here, without which this discussion would be missing some elements.

What we are looking at here is the physiological assessment of venous congestion, and how doppler interrogation of the portal vein may help us. So here is Korbin’s case, and I will interject (in bold) where I think a point can be made, or at least my thoughts on it.

“Awesome post. Awesome website. I had never heard about portal vein pulsatility until reading your blog. I have previously been looking at the renal resistive index and renal vein Doppler pattern in my hypotensive/shock patients (along with doing a bedside ECHO and POCUS pulmonary exam) to guide when to stop fluid resuscitiation.

Very impressive. I have only ever heard of a handful of resuscitationists looking at this (including Andre, and consequently myself) so I’m gonna have to have a chat with this fellow soon! For those who have not tried or are not familiar, some basic info can be found here. I’ll have to review this, but I think one issue with RI is that there is an associated ddx, so that without knowledge of baseline, I would not be certain how to use it. Renal vein doppler seems very interesting to me, as that venous path is the one of the cardiorenal syndrome (forget about all that “low flow” nonsense in CHF – not in shock – patients), and there is clearly bad prognosis associated with abnormal (discontinuous) flow patterns. Here is a really good study (Iida et al)  and its editorial (Tang).

Iida Doppler_CHF Heart Failure JACCHF 2016

Tang Editorial JACCHF 2016

I had a case last night that I think illustrates that fluid administration can be the wrong thing to do in some septic shock patients. Plus, I got to try something new and look at the portal vein for pulsatility.

My case was a gentleman in his late 60’s with a history of HTN, atrial fibrillation and HFrEF who presented with three days for a productive cough and fever. POC lactate was 2.7. His HR was 130-140’s, in atrial fibrillation, febrile, MAP was 50, and he looked a bit shocky and was diaphoretic. The resident had started antibiotics and a fluid bolus of LR, of which not much had gone in (maybe 200cc) when I came to start a night shift and evaluated the patient. I asked that the fluids be stopped until we could have a look at him.

His IVC was about 1.5-2 cm with >50% collapsibility.

So I’m gonna hit the pause button right there for a couple of comments. That’s not a hypovolemic IVC. The RAP may be raised by some of the  It may very well be volume responsive, but I think the first thing to go for is correcting that tachycardia. The antibiotics are definitely the right call, but the fluids should, in my opinion, be held until assessment for volume tolerance is done.

His LV looked to have some mildly decreased EF and was going very fast. RV looked normal. His average SV was 45, CO was 6.1, E/e’ ratio indicated a slightly elevated left atrial pressure. His estimated/calculated SVR by the ECHO numbers was about 550. Lungs were dry anteriorly, without B-lines, but PLAPS view was c/w bilateral lower lobe PNA. Renal vein Doppler was biphasic and the resistive index was very high. I looked at his portal vein and it was pulsatile.

Excellent. So there is pulmonary pathology, which makes fluid tolerance already of concern. The CO is certainly adequate and SVR is low, suggesting a vasodilatory shock etiology. 

In the past, based on the IVC and the way the RV looked, I would have done a straight leg raise or given a given some crystalloid to see if his SV and BP improved, and if it did, give some IVF. Instead, I told the staff to given no more fluids and I gave him 20 mg of diltiazem.

His heart rate decreased from 130-140’s to 90. His averaged SV increased to 65 (probably due to increased LV filling time and better diastolic perfusion time), CO was 5.9, estimated SVR was 570. The renal and portal vein Doppler were unchanged. The MAP didn’t bulge and stayed low at 50-55. At this point I ordered furosemide and but him on a norepinephrine infusion to increase the SVR, first at 5 mcg/min, then 7 mcg/min.

Totally awesome to see. It isn’t unusual for me to diurese patients in vasopressor-dependant shock, as more and more data is emerging on how venous congestion has deleterious effects on the gut and may even contribute to the SIRS-type state. And once a patient is in a euvolemic to hypervolemic state, the only fluid they get from me is the one containing norepinephrine. Maintenance fluid is not for critically ill patients IMO.

The NE gtt increased his MAP to 75 mmHg. His SV was 80, CO 7.1 (I was a little surprised it didn’t go down a bit), estimated SVR was 700. I had his labs back at this point and his creatinine was 1.8 and the last creatinine we had was 1.1 a few months ago. His renal vein pattern was still biphasic and his renal resistive index was also still quite high at 0.89, which would probably predict a significant kidney injury in 2-3 days.

Even though his MAP and hemodynamics looked great, I was worried about the renal resistive index. I ordered a little more furosemide and started him on a little bit of a vasopressin infusion. After things settled down, MAP was 75-80, his average SV was 80, CO 7.3, estimated SVR was about 800, and his renal resistive index (RRI) was 0.75. He looked much better too. The second lactate was 1.3.

Very interesting to see the drop in RRI.  Great case to show how you don’t need to chase lactate with fluids. That is an antiquated knee-jerk reflex hinging on the concept that hyperlactatemia is primarily due to tissue hypoperfusion, which we have learned is not the main cause. 

This morning his creatinine had improved to 1.3 and he is doing well.

South of your border, CMS considers me a bad doctor for not giving 30 cc/kg crystalloid as a knee jerk reaction and instead giving a diuretic and early vasopressors as we did in this patient. Just looking at his IVC would indicate that IVF would be a reasonable strategy. If I had done a SLR or fluid challenge and found him fluid responsive, in the past, I would be temped to chase every bit of fluid response with pushing more fluids, but the renal and portal vein Doppler made me stop fluids in this patient this time. I think this example illustrates the importance of looking at each of your patients on a case by case basis and looking at the whole picture (heart, lungs, kidneys, now portal system too for me!), rather than following protocols.

Kudos. 

 

So then, Andre decides to chime in as well:

Very interesting but be careful about the interpretation of portal pulsatility because it can be falsely positive particularly in hyperdynamic young patient, which was may be not the case. We published an algorithm in order to identify the true portal pulsatility associated with right heart failure and fluid overload and a normal portal vein with pulsatility:

Tremblay Portal pulsatility Flolan Mil AACR 2017

(Tremblay 2017 A&A care report) A & A Case Reports. 9(8):219–223, OCT 2017 DOI: 10.1213/XAA.0000000000000572 , PMID: 28604468)

The latter will be associated with normal RV even hyperdynamic, normal hepatic venous and renal flow, normal IVC. We still need to explore the significance of portal hypertension outside the area of cardiac surgery where we are finalizing our studies.

Always tell my residents and fellow, treat the patient and not the number or the image. That being said, the patient got better so cannot argue with success.

So I think this is a really important point, that it can become dangerous in POCUS to look for a simple, single-factor “recipe” with which to manage the patient, when in fact you can have many factors which, integrated, can give you a much better understanding about your patient’s pathophysiology.

My take on portal vein POCUS so far is that it is a marker of critical venous congestion, beyond simply a plethoric IVC. I think it is wise to stop fluids before the plethoric IVC, but a plethoric IVC with a pulsatile PV should bring fluids to a screeching halt and some decongestive therapy started. The data for this?  Andre is cooking it up, but in the meantime, there is plenty of evidence that congestion is plenty bad, and NO evidence that maximizing CO works at all, so I am very comfortable in witholding fluids and diuresing these patients. 

For fun, here is a little figure from Tang et al about the doppler patterns discussed.

Love to hear everyone’s thoughts!

and for those interested, there will be a workshop run by Andre and myself on this at :

more to come on this soon…

cheers

 

Philippe

The Resuscitation Tracks 1: Portal Vein POCUS with Dr. Andre Denault. #FOAMed, #FOAMcc, #FOAMus

So this is one of the key discussions I wanted to have in my process of synthesizing my resuscitation algorithm. Dr. Denault is the one guy I’d call a mentor, and I think one of the rare and true clinician-scholar, who is just as comfortable being the anaesthetist/intensivist at the bedside of the crashing patient as he is being the keynote speaker in major conferences, or writing the textbooks that lead the field in acute care/perioperative TEE and critical care POCUS.

So to put some perspective to this discussion, back in 2014 I organized a resuscitation afternoon for internists with Andre and another awesome guy you probably all know, Haney Mallemat (@criticalcarenow). In a quick 15 minute discussion between talks, he shared with me the most recent of his discoveries, portal vein POCUS as a marker of right-sided failure/volume overload in his post-op cardiac patients, and how aggressively managing these resulted in much improved post-operative courses in terms of weaning, vasopressors and even delirium.

Interesting stuff.

So here you are:

So I’ll let you all ponder that and I would really like to hear comments and ideas. Sometime in the next few weeks I’ll be finalizing my resus algorithm – which will not be a recipe approach, as you might suspect if you have been following this blog, and will rely heavily on POCUS and the clinical exam.

cheers and thanks for reading and listening!

Don’t miss Andre running a POCUS workshop on PV/HV at  next april!

Philippe

 

Twittercase: Fouled urine and #POCUS discussion. #FOAMed, #FOAMcc, #FOAMer

So I admitted a patient to the ICU yesterday from the ED.  He’s an 80-something gentleman from a nursing home with an indwelling catheter, and presented with stupor, hypotension, fever, leukocytosis and clearly infected urine.  His labwork showed a lactate of 5.3, a double-normal creatinine and, after 3 liters or so of crystalloid, he was started on norpeinephrine and hence came to the ICU. His extremities were fairly warm, and his cerebral saturation was 62%.

Before seeing the POCUS info, however, consider a clearly septic patient with AKI and elevated lactate. He did get 3 liters of fluids, but i’ve seen these patients get more fluids, whether for hemodynamics, lactate, AKI or any combination of the aforementioned.

Below is the clip, a quick POCUS sequence going from IVC (with hepatic vein flows), subxiphoid cardiac views, both lung views.

So here, we see a plethoric and fixed IVC (sorry I didn’t include the short axis but it was round and full, so in this case the LAX is reliable) with biphasic hepatic flow. Cardiac views show normal ratios and a poor LV function. Chest views show bilateral effusions and consolidations.

So what did I do?

  1. stopped fluids (I do not believe in routine maintenance fluids any more than in maintenance antibiotics or vasopressors).
  2. gave lasix (given that he is on the flat part of FS curve, I was unconcerned with some diuresis decreasing his preload, vasopressors and lactate notwithstanding, and with the goal to decongest his kidneys, likely suffering from congestive insult on top of the septic one).
  3. did not try to chase his lactate with increasing cardiac output (lactate being a great alarm bell and prognosticator, but little else, and because he was worm and with a decent cerebral saturation, I did not feel that there was a major cardiogenic component to his shock).

So what happened?

This morning, after a negative balance of 1,500 cc in 24 hours, his levophed dose has dropped by half, his lactate is normal and his creatinine is decreasing. A decade ago, I would have chased down the last ounce of volume responsiveness with fluids, aggressively trying to drive down the lactate and creatinine, and maybe, 24 hours later, he would have developed “ARDS” because he was “so sick.”  😉

cheers

 

Philippe

 

Hepatic Portal Venous Gas (HPVG): a Less Ominous Sign than We Thought? A Case of HPVG associated with massive PE… #FOAMed, #FOAMcc

So a few years ago I had a patient in the ICU, post op for some abdominal surgery, and, using POCUS, I detected a hyper echoic area in the liver, in a wedge shape.  I scanned the patient and, lo and behold, there was a matching area of air-filled hepatic venous sinuses on CT scan. Well, my surgical colleague and I were very concerned and proceeded to inform the patient he would be needing exploratory surgery for what was likely ischémie bowel. He essentially – though in more polite words – told us we were idiots and that his belly felt fine and he didn’t think surgery would be needed at all.

His belly did feel fine. So were his labs. So we worried, but, given this whole thing about free will and consent, etc, couldn’t very well force him into what we felt was necessary surgery.

The next day he was fine. On POCUS, the area of air had shrunk. The next day, it was gone altogether.

We thanked him for his keen clinical acumen and for teaching us a good lesson.

However, we were a bit perplexed, because traditional teaching equated portal venous air with a severe bowel disorder, usually ischemic or inflammatory, with exceedingly high mortality. At least that is what we had been fed. We are both grads of 1999. Hmmm…

So over the next few years we saw a few of these cases, sometimes bad, sometimes not, and a review of the literature (see below)  showed an interesting evolution of the disease. Described in the 1950’s on plain films, hepatic air was a bad omen indeed, with mortality in the 75-90% range. In the CT era, the mortality started to “drop” to the 35-60% range. Now you can find quite a few reports of “surprisingly” good outcomes with conservative management. So this evolution doesn’t represent a change in severity so much as the technological capability to detect smaller and smaller amounts of air in the venous system – just increased sensitivity. And now, with POCUS – ultrasound is the most sensitive detector of air in a vascular tree – the associated mortality is likely to take another drop, not only because of our ability to detect very small amounts of air, but also because we are actually looking at the area, and also in a wider range of patient’ pathologies that those commonly associated with HPVG.

 

Clinical Case: HPVG and PE!

So a couple weeks ago I saw a patient in the ED who’d recently broken an ankle, had her foot put in a boot and managed conservatively and came back dyspneic and tachycardic. Here are a couple of clips:

As always, I start with the IVC:

Big & fixed.

Hepatic veins:

Biphasic flow.

Femoral veins:

So here the source of the problem is pretty clear, a large common femoral DVT.

She wasn’t very echogenic so I don’t have great clips of the heart but she had a dilated and hypocontractile RV with a McConnell’s sign (preserved apical contraction), small and hyper dynamic LV with septal flattening.

Now here is where it gets interesting, the portal vein:

You can clearly see bubbles traveling up the portal vein. Ominous, or not?

So clinically, her abdomen was normal, she had no abdominal symptomatology at all…

 

Pathophysiological musings:

So the severe RV obstruction resulted in significant venous congestion. Additionally, the decreased cardiac output – as manifested by a lactate of 4 and mild tachycardia/hypotension (110 HR, BP sys 90’s) was clear.

The etiology of HPVG in the literature isn’t clear – mucosal disruption, bacterial gas are all mentioned but as far as I could find, no definitive answer.

Is it possible that there is a “normal” inward leak of mucosal gas that is normally fully dissolved in the venous bloodstream, but that, in cases of low flow and/or venous congestion, the dissolution capacity (per unit time) decreases, and that gas comes out of solution?  Alternately, those who have increased intraluminal pressure (gastric distension, etc), the increased transmembrane gas driving pressure may overload an adequate blood flow…

This would explain the benign course of many patients, particularily those with gastric dilation.

 

Clinical course:

Based on hemodynamics, tachypnea and, to some degree, venous congestion, I decided to thrombolyse her using 1/2 dose lytics. Within a couple of hours her HR decreased to the 90’s and BP rose to 110 systolic.  Echographically, however, the IVC/RV findings remained similar, but the HPVG decreased. By the next day, HPVG was altogether gone, lactate had resolved and dyspnea was significantly better.

 

Take Home Message:

HPVG, although not quite as poor a prognostic sign as once thought, nonetheless warrants concern and investigation, even if the abdominal exam is entirely normal and without symptomatology, as correction of an underlying cause of “benign” HPVG (whether low-flow or bowel distension) would still need to be addressed.

In the meantime, I suspect that, reported or not, this has been noted by other POCUS enthusiasts, since we are now looking more frequently at this area, and are dealing with patients with low-flow states, congestion, bowel obstruction/ileus or more than one of these.

Hopefully some investigators will take a look at this phenomenon and delineate the pathophysiological mechanism!

Love to hear of your experience with this.

cheers!

 

Philippe

For those interested in POCUS, see here for a quick read primer on clinical applications of POCUS.

 

HPVG Review article 2009:

wjg-15-3585

 

MOPOCUS: A great synopsis by Ha & Toh. #FOAMed, #FOAMcc, #FOAMus

Just came across this review and figured I should share. The authors make a great synopsis and review of POCUS in acute illness:

MOPOCUS Review by Ha &To

The only thing I would add to this is a more physiological way to assess the IVC, which I’ve blogged about here.  Sadly, I’ve heard a few people stating how they didn’t want to get into the dogma of IVC ultrasound, that it wasn’t reliable, etc.  The IVC doesn’t lie. It’s just not a recipe. The IVC findings have to be integrated into the rest of the echo graphic and clinical examination.  Trying to use it as a single value is akin to using serum Na+ as a diagnostic test for volume. It works only sometimes.

Please spread among the POCUS non-believers. We’ll convert them, slowly but surely. But the sooner, the better for the patients. Again, there’s no excuse to practice acute care without ultrasound. It’s not right. I’m not saying every probe-toting MD is better than one without, but everyone would up their game by adding POCUS, once past the learning curve!

cheers!

 

Philippe

Tom Woodcock: The Revised Starling Principle and The Glycocalyx! #FOAMed, #FOAMcc

Screen Shot 2016-08-05 at 11.57.11 PM

So today, I had the chance of having a private tutorial with Dr. Thomas Woodcock (@thomaswoodcock) about the glycocalyx and the revised Starling principles.  For anyone interested in fluid resuscitation, this is an area you have to delve into. The basic principles we all learned (which are still being taught) are basically the physiological equivalent of the stick man we all started drawing as toddlers: overly simplified and far from an accurate representation of reality.

Now my first disclaimer is that I have been a colloid supporter for many years. My physiological logic for that had been to minimize the crystalloid spillover into inflamed/septic areas, particularly the lungs and abdomen, when those are the septic sources. However, I was likely misled by my education and lack of knowledge about the endothelium.

So I stumbled upon the whole glycocalyx thing a couple years ago, and this prompted me to try more enteral fluids – the only way fluids normally ever enter the vasculature – but little else. Aware that it’s there, but unsure what to do about it.

Now a year and a half ago, Andre Denault, my closest thing to a mentor, casually dropped the line to me about albumin not working. “Don’t use it. It doesn’t act the way we think it does.”  But it was a brief chat, and I didn’t get to pick his brain about it.  Just a few weeks ago, I discuss with Jon Emile (Kenny), and he’s coming to the same conclusion.  Damn. I’m finding it a bit harder to hang on to my albumin use, which is beginning to look a bit dogmatic and religious.

Here is Jon-Emile’s take on it – a must-read.

Here is Tom Woodcock’s site and article – another must-read.

And here is my discussion (in two parts) with Tom (to skip the silence, skip forward to about 30 seconds into each – sorry my editing skills are limited!)

 

Bottom line?

Probably stick to isotonic crystalloids, and some hypertonics.

 

Love to hear some thoughts!

Cheers

 

Philippe

 

 

The NYC Tracks with Jon-Emile: Paracentesis and Volume Status. #FOAMed, #FOAMcc, #FOAMus

So I was in NYC last week and met up with my buddy Jon-Emile Kenny, (@heart_lung), intensivist-physiologist extraordinaire, and we recorded a few discussions on practical matters.

I always love to debunk myths and avoid dogmatic guesswork, and, more often than not, Jon, with his encyclopedic knowledge of the physiology literature, but more importantly a cutting edge understanding of it, can back up my vague ideas and empirically derived ideas, so that the next time someone asks me why this is so, I can have a semi-enlightened answer!

So here is the first, where we discuss the common question about the need (or not) of intravascular volume repletion during or following large volume paracentesis. Yes, there are some formulas out there as to how much albumin or crystalloid one should give, due to the worry of subsequent hypovolemia. Note how those formulas use no data about your patient’s volume status at the time of paracentesis, so as far as I’m concerned, they have no value whatsoever in an era where we can assess this. Yes, ultrasound is the base as far as I’m concerned.

Here we go:

Please share your thoughts!

cheers

 

Philippe

Physician, know thy fluids! #FOAMed, #FOAMcc, #FOAMer

So I posted a quick poll on http://www.therounds.com, a really upcoming physician site, with the intent of getting an idea of what people use as fluids and what they know about them.

 

The first question was “What is your fluid of choice for resuscitation?”

Screen Shot 2015-03-24 at 10.58.56 AM

…no big surprise, 61% choose NS.  Despite the evidence of increased renal dysfunction (JAMA 2012 – I posted about this here: https://thinkingcriticalcare.com/2013/11/18/enough-with-the-normal-saline-foamed-foamcc/)

Well, at least this is chosen with good knowledge of its pharmacological properties, right?

Screen Shot 2015-03-24 at 10.59.12 AM

Hmmm… 57% peg it as physiological or basic.  Only 9% get it right. The pH is 5.6 or so.

So here we have favorite medication used by a lot of people, who use a lot of it, usually in quite ill patients, often acidotic, and who are not aware that the pH is in fact also quite acidotic.

I think it just is an important example on how we need to treat fluids as medications, and not think of them as benign interventions, and by doing so, we’d feel much more obliged to look at what we are giving in terms of composition and quantity, rather than the debonair attitude we have mostly grown up with.

 

cheers!

 

Philippe

 

 

Musings with Jon-Emile & Philippe – Fluid Resuscitation: Physiology and Philosophy! #FOAMed, #FOAMcc, #FOAMer

So here, Jon-Emile and I explore a topic I’ve posted about before (http://wp.me/p1avUV-bd) so I can see if a master physiologist agrees with my rationale (…not just my rationale but supported by a ton of literature many choose to overlook!).

Please visit http://www.heart-lung.org for Jon’s awesome physiology tutorials!

Love to hear listeners’ thoughts!

cheers

 

Philippe