Wicked Clinical Case: POCUS & Prone save the day! #FOAMed, #FOAMcc, #FOAMer

So I get a call from a colleague in the ED at about 2am, telling me about a 39 yr old woman post-arrest. So I start putting on my boots and warming up the car (it’s January in Montreal folks).  Apparently she had presented earlier in severe acidosis, the diagnosis is unclear, but she apparently got 2 units for an Hb of 49, then went into respiratory failure and got intubated. She arrested about 30 minutes later, cause unknown.

I tell the ICU to prepare a bed but I want to see her in the ED first. Twenty minutes later I put probe to patient and see a full IVC with spontaneous echo contrast. On that I tell the nurse to hold the fluids – there was a bag and tubing and a pump with 100ml/hr on it – and turn into a subxiphoid view to see a normal RV and a hypokinetic LV with some WMAs. She has marked consolidations  in both posterior lung fields and B lines laterally, with small effusions and dynamic air bronchograms (indicating patent airways). At this point she has a HR of about 120, but there is neither perceptible BP (by NIBP) nor saturation. She’s on levophed at 20mcg. She’s about an hour post arrest which was witnessed and brief (<10min to ROSC).

The theories about the arrest are possible hyperkalemia: she was intubated with succinylcholine before the K of 6.1 was back from the lab, and her pre-intubation pH was 7.0, and post-intubation she was only ventilated at 400 x 18, possibly precipitating a drop in pH and a rise in K. Her EKG had some nonspecific signs at this point, but also a poor anterior R wave.

So we head to the ICU, as instrumentation was needed. Cerebral saturation (SctO2) is 42% and ETCO2 is 20mmhg, which reassures me that the BP is probably in the measurable range (normal SctO2 is >60% and varies, but 47% is certainly viable)…  A jugular CVC with continuous ScVo2 and a femoral arterial line goes in:

screen-shot-2017-01-05-at-10-44-50-pm

So with a BP of 59/44 (ignore the 100/46, not sure whose arm that was on!) I start epinephrine, as the POCUS is similar, as I want some added beta-agonism. ScVO2 matches SctO2 in the 40’s. We get the BP up the the 90-1oo range, the ETCO2 goes to 30, the SctO2 and ScVo2 go up into the high 40’s, which is very reassuring, because with this I know that my epi drip is improving perfusion and NOT over-vasoconstricting. Without looking at a real-time tissue perfusion index of some sort or other, it is nearly impossible to know rapidly whether your therapy is helping or harming (will discuss tissue saturation & resuscitation monitoring in more detail in another post sometime soon).

screen-shot-2017-01-05-at-10-46-31-pm

So now the sat finally starts to record in the low 60’s. We have a PEEP of 5, so start bringing it up. We hit 16 before the BP starts to drop, and that only gets us to the mid 70’s sat%. She actually squeezes my hand to command.

screen-shot-2017-01-05-at-10-45-21-pm

At this point I take a few seconds to recap in my mind. I’d spoken to the husband briefly and she had had recurrent episodes of feeling unwell with headache, nausea and diaphoresis, and that had been out for dinner earlier and she felt fine until later in the evening when this came on and eventually brought her to hospital. There was also a notion of hypertension at an ER visit a couple of weeks ago. Her history was otherwise not significant. Nonsmoker.

Pheo? Maybe, but shock?  I repeat the EKG, and now, in I and AVL, there is perhaps a 1mm ST elevation. She’s 39 and essentially dying. Lactate comes back >15, pH 6.9.  I give her a few more amps of NaHCO3. You can see the BP respond to each amp. I decide we need to go to the cath lab and get the cardiologist on call to get on the horn with the interventional team at a nearby hospital with a cath lab and ECMO, which is what I think she needs. Hb comes back at 116, making that initial 49 that prompted 2 PRBCs probably a technical or lab error…very unfortunate. There are no visible signs of significant bleeding.

But back to the patient, because this isn’t really a transferrable case.

Recap: a 39yr old woman in cardiogenic shock AND in severe congestive heart failure exacerbated by fluids and packed red cells, with a PO2 in the 40’s and sat in the 70’s.

So I decide to prone her.

screen-shot-2017-01-05-at-10-47-44-pm

Along with draining tamponades, this had to be one of the most rapid and rewarding maneuvers I’ve done. There was a scry drop of sat to the 40’s for a few seconds (may have been a technical thing), but then within a few minutes: BP to the 130’s, SctO2 to 59% and sat 100%!

screen-shot-2017-01-05-at-10-46-46-pmscreen-shot-2017-01-05-at-10-47-31-pm

screen-shot-2017-01-06-at-12-08-05-am

 

We dropped the vasopressors, the FiO2, and all breathed a collective sigh of relief. Now for the novices out there, prone ventilation improves VQ mismatch by moving perfusion from diseased, posterior lung fields to now-dependant, relatively healthy, anterior lung fields.

So transfer at this point was in the works. I planned to leave her prone until the last minute. The miraculous effect started to slowly wane within about 30 minutes, with sat and BP creeping down. At the time of transfer, we were back up to 80% FiO2.

So why is this?  Simple enough, this being simple pulmonary edema – rather than consolidated pneumonia – it migrated to dependent areas  relatively quickly. This was confirmed by a quick POCUS check:screen-shot-2017-01-05-at-10-48-06-pmscreen-shot-2017-01-05-at-10-48-26-pm

So in the still shots, you see a pristine “A” profile (normal, no edema) from the patient’s back, and a severe consolidation or “C” profile with ultrasound bronchograms in the antero-lateral (now dependant) chest. Impressive. (for those wanting some POCUS pearls see other posts and here). This is the reverse of her initial POCUS exam.

So we flipped her back and transported her – lights & sirens – the the cath lab, where they were waiting with ECMO cannulae. As an aside, it was quite refreshing to speak to the ICU fellow who spoke POCUS as well as french and english – it’s not usually the case, but I’m glad to see the change. I do believe it to be a direct effect of the influence of my friend and mentor, Dr. Andre Denault, one of the POCUS deities.

So she turned out to have a normal cath and a large adrenal mass. She did well on ECMO, being weaned off it today, and is now alpha-blocked and waiting for surgery, neurologically intact for all intents and purposes. A big thanks to the interventionists and the ICU team at the Montreal Heart Institute. Puts a smile on my face.

 

Take Home Points:

  1. don’t resuscitate without POCUS. I wouldn’t want anyone guessing with my life on the line, would you?
  2. keep pheo in mind as a cause of “acute MI” and shock
  3. if you’re not using some form of realtime monitor of perfusion (continuous CO, SctO2, ETCO2, ScvO2) then all you’ve got is looking at the skin and mentation, so you are essentially flying blind. Lactate and urine output are not realtime in real life.
  4. get ECMO in the house, it’ll come in handy. I’m working on it.

 

Love to hear some comments!

cheers

 

Philippe

 

ps I’ll try to add more ultrasound clips from this case in the next few days.

N=1 Principle in ARDS and esophageal pressure directed mechanical ventilation. #FOAMed, #FOAMcc

So i recently came across a review on esophageal pressure-guided ventilation in ARDS, which is in fact a technology I’ve had in my shop since 2008, but rarely use.

The truth is that I haven’t seen much “ARDS” in the last years, and I believe quite strongly that this reflects simply our hospital’s increased awareness of the nocive effects of over-zealous fluid resuscitation. Although in the ICU we still admit patients who, in our opinion, have received a bit more fluid than they should have, we have become more aggressive with diuresis “despite” the presence of shock, and usually see “ARDS” resolve. This is a direct consequence of actually “looking” at our patients’ volume status using ultrasound (for more see, well…most other posts on this blog!).

However, what seems like genuine ARDS does come around once in a while, and we recently had severe respiratory failure develop in a morbidly obese patient, and all of a sudden, in the presence of an FiO2 of 100%, a PEEP of 14, intra-abdominal pressures between 20 and 25, and on Flo-Lan, it seemed it might be a good idea to tailor ventilation.

Current Practice:

The most common practice currently is the ARDSnet type low volume (5-7ml/kg) lung protective ventilation, using a PEEP/FiO2 scale and aiming for plateau pressures (Pplat) below 30. Generally speaking a good idea, but one has to understand that this is, once again, a one-size-fits-all (except for the per kg) approach, which isn’t ideal if you try to follow  the N=1 Principle.

Why is this?  Because, due to physical characteristics (obesity, chest wall stiffness, etc,) and pathology (increased abdominal pressure, etc), the airway pressure reflects the respiratory system pressure (Prs) rather than the transpulmonary pressure (Ptp), which is the variable most related to volutrauma (which has eclipsed barotrauma as the mechanism for most ventilator-induced lung injury (VILI).  Ptp essentially relates to overdistension, which is what results in pneumothoraces. In terms of parenchymal micro-injury, it seems to be most related to atelectrauma, in essence the opening and closing of alveoli, with the resultant shear forces disrupting surfactant and cell surface. This type of injury relates best to finding optimal PEEP to both recruit and prevent de recruitment – in effect minimizing the amount of lung tissue collapsing and reopening.

 

Esophageal pressure (Pes)-guided Practice:

So Pes is used as a measure of pleural pleural pressure, and:

Ptp = Paw – Pes

That equation is the central tenet to this, and basically, you have to reset your goals to:

a. Ptp (exp) around zero – optimal PEEP – (meaning no over distension and no de-recruitment)

b. Ptp (insp) below 25 – though this is not really individualized as a hard data point, but has been shown to be a reasonable cutoff for volutrauma.

 

How do you do this?

By slipping in a special oro/naso-gastric tube with a balloon connected to the ventilator, one is able to simultaneously measure airway pressure (as is standardly done) and esophageal pressure. This is what it looks like:

img_6207

Here we can see that this patient has a PEEP of 20 (top), a Pes of about the same, and thus a Ptp (bottom) near zero.

We’ll discuss this case hopefully tomorrow, but just to show the mechanics/technique of it.

 

Bottom Line:

So this involves tossing out the ARDSnet charts and trying to individualize and optimize Ptp (insp and exp) instead of plateau pressures and PEEP.  How may it be useful clinically? Well, you may be able to detect unsuspected states of de-recruitment/ateletasis due to excessive chest wall or abdominal pressure, and allow you to increase PEEP “safely.”

When should I use this?

I’m not sure what everyone else is doing, but we are in the process of setting up a protocol where esophageal balloons will be inserted for any patient whose ventilator settings are approaching or exceeding FiO2 70%/PEEP 15, indicative of sufficiently severe respiratory failure warranting this additional level of fine-tuning.

I tend to use it when ventilating two groups: those with (a) elevated intraabdominal pressure, and (b) the obese patients, as they often have elevated Pes (usually due to diaphragmatic displacement. Interestingly, the correlation between obesity and Pes is not very good, so one should not “blindly” feel they can crank up the PEEP to 25 and ignore plateau pressures, as some obese patients have normal Pes (likely due to compliant abdominal walls.

Would love to hear what others do.

 

Here are the relevant articles/references:

talmor-nejm-2008

ajrccm-2014-review

 

Cheers!

 

Philippe

 

POCUS Course: Quebec city 2017!

Here’s a chance to learn with one of the masters in the field, my friend Andre Denault, internist-anaesthetist-intensivist extraordinaire, and a true mentor to me.

Designed for acute care docs, this is an approach to respiratory failure, shock and renal failure. I recommend it to anyone in the field!

 

screen-shot-2016-12-15-at-8-01-04-pm

 

I’ll likely be an instructor there is I can free up my schedule, so see you there!

 

cheers

 

Philippe

Bedside Ultrasound Case: Control the source. #POCUS #FOAMed, #FOAMcc, #FOAMus

So this morning a 65yr old man with shock and respiratory failure was admitted to the ICU, hypotensive on levophed and vasopressin, with a lactate over 10.

So, as usual, my first reflex was to reach for the probe to assess hemodynamics. He had been well resuscitated by a colleague, and the IVC was essentially normal, somewhere around 15 mm and still with some respiratory variation. However, scanning thru the liver, my colleague had noted a large hepatic lesion, which on CT scan (non-infused since patient had acute renal failure) the two radiologists argued whether it was solid, vascular or fluid filled.

image

Having the advantage of dynamic ultrasound, you can tell that there is some fluid motion within the structure, very suggestive of an abcess, especially in the context of severe septic shock:

So the next step was source control:

 

Pretty nasty. Pardon my french!

We got over 1.5 L of exceedingly foul pus.

imageimage

Within a couple of hours the lactate dropped to 3 and the levophed was down by more than half.

I think this case illustrates once again, the power of POCUS in the hands of clinicians.  While I am certain that the diagnosis would have been made without POCUS, it probably would have taken additional time as the radiologists themselves were debating its nature, and without POCUS, bedside drainage in the ICU would have been out of the question. That liter might still be in there tonight…

For those interested in how to integrate POCUS in their daily rounds, I think I put together a fair bit of clinical know-how and tips in this little handbook.

 

Cheers!

 

Philippe

MOPOCUS: A great synopsis by Ha & Toh. #FOAMed, #FOAMcc, #FOAMus

Just came across this review and figured I should share. The authors make a great synopsis and review of POCUS in acute illness:

MOPOCUS Review by Ha &To

The only thing I would add to this is a more physiological way to assess the IVC, which I’ve blogged about here.  Sadly, I’ve heard a few people stating how they didn’t want to get into the dogma of IVC ultrasound, that it wasn’t reliable, etc.  The IVC doesn’t lie. It’s just not a recipe. The IVC findings have to be integrated into the rest of the echo graphic and clinical examination.  Trying to use it as a single value is akin to using serum Na+ as a diagnostic test for volume. It works only sometimes.

Please spread among the POCUS non-believers. We’ll convert them, slowly but surely. But the sooner, the better for the patients. Again, there’s no excuse to practice acute care without ultrasound. It’s not right. I’m not saying every probe-toting MD is better than one without, but everyone would up their game by adding POCUS, once past the learning curve!

cheers!

 

Philippe

CCUS Institute Bedside Ultrasound Mini-Fellowships. #POCUS #CME

The personalized CCUS Institute’s Mini-Fellowships (CME-eligible) are focused on bedside ultrasound and designed to take clinicians with some degree of proficiency in basic ultrasound to a whole other level. The opportunity to follow a seasoned clinical ER/ICU sonographer and see actual cases, learn the clinical integration of ultrasound data into decision-making is a unique one, outside of a handful of residency programs whose faculty includes experienced bedside sonographers. Basic how-to courses are great, and certainly the first step for those clinicians adding ultrasound to their armamentarium, but what we have seen, sadly, is after initial enthusiasm, many don’t really pick up the probe because the confidence to “make the call” simply isn’t there. Yet.

In a sense, it’s almost as if, as medical students, we’d read Bates, practiced physical exam on each (more or less normal ) other, and were then set out to make diagnoses and treat without having residents and attendings around to confirm our findings a few times, until we got the hang of it. Hmm. That would be rough.

Some physicians are fortunate enough to practice in a center where there are a few “veterans” of bedside ultrasound and can gain some acumen that way, but others may be the ones spearheading their institution into the 21st century, and it is from the comments of several of those, attending the CCUS Symposium (2008-2014 – perhaps a return in 2017) asking for the possibility of shadowing some of us, that the Mini-Fellowships came to be.

Mini-Fellowship Structure

Montreal Mini-Fellowship: Participants shadow one of our instructors (ICU attending) during the regular working days and discuss the cases and ultrasound-relevant aspect of each case (more often than not the case in entirety), and are able to practice their ultrasound skills. The duration is flexible although we generally suggest a minimum of two or three days. Each day would usually be about 6-8 hours, some may be more.

Toronto Mini-Fellowship: Participants get a dedicated and highly experienced preceptor (Dr. Edgar Hockmann) who is not on clinical service but with access to the ICU patients, and will provide a structured and dynamic session adapted to the participant’s needs and abilities.

The case exposure will be mainly ICU as well as ER and ward patients. The focus will be on acute care issues. After two days, participants who had a basic ability in ultrasound should be fairly comfortable with assessing volume status, cardiac function, perform lung ultrasound, be able to identify and assess intrathoracic and intr-abdominal fluid collections, assess the kidneys, bladder and gall bladder, measure optic nerve sheath, assess carotid flow and some may have exposure to trans-cranial doppler. The focus may be shifted depending on a participant’s interest.

This takes place in Montreal, Quebec or Toronto, Ontario, Canada.

Participants will have the opportunity to work with handhelds, midrange and high-end ultrasound devices.

Space is limited as we can generally only accommodate 1-3 participants per month.

CME

So, great news, finally went thru the CME process and lo and behold, the Mini-Fellowships qualify for 25 Section 2 credits (regardless of the length) and 3 hours of Section 3 credits (per day of fellowship). For you americans:

Through an agreement between the Royal College of Physicians and Surgeons of Canada and the American Medical Association, physicians may convert Royal College MOC credits to AMA PRA Category 1 Credits™. 

Bonus!

Upcoming participants will also receive a copy of the forthcoming handbook:

covercover-back

Requirements 

Please have basic experience in bedside ultrasound. We don’t want to teach you about depth and gain. We’re happy to fine tune your views but not to introduce you to the main cardiac views. It would just be wasting your clinical time. We’re here to show you how to assess pathology and integrate your findings into clinical decision-making. Take the basic group course to learn the views, or be self-taught from youtube/iphone and practicing on your patients. You don’t have to be great, but to get the most out of this experience it shouldn’t be your first time holding a probe.

Registration

email me at philipperola@gmail.com or reach out on twitter @ThinkingCC

Tuition (Updated 2022)

Montreal Mini-Fellowships: 600$ CAN / 500$ USD per day for 1 physician, 400$ CAN / 350$ USD per person per day for additional days, and 400$ CAN / 350$ USD per person per day for a 2-3 physician group (maximum)

Toronto Mini-Fellowships: 800$ per half day (4h).

100% refundable until you start. Even if you don’t show up. Really. We’re not in it for the business. We get to go home earlier if you don’t come.

Testimonials:

« I have had the chance to participate in a shadowing experience with Dr Rola at the Scarborough General Hospital ICU during two days in 2013. As a general internist and assistant program director, this experience really opened my eyes regarding the use of bedside ultrasound in general internal medicine and for IM residents. I think I would have benefited more of this experience if I had done more training previously, and I encourage future participants to do so. However, I came back from this experience with a very clear idea of the benefit of CUSE for my patients and for our residency training program. I really saw how ultrasound was used ‘in action’, in a much more realistic way than what is usually shown in CPD meetings. I also saw its limitations and the skills I needed to develop to generate good images (not something you can learn over the weekend!). Since then, I participated in formal trainings and licensing activities (more than 250 supervised US on acute care patients) and now practice bedside ultrasound autonomously. We now offer a bedside ultrasound training for our residents with the help of the emergency medicine department and an ultrasound-guided procedural simulation lab. Nothing in CPD has improved my practice and benefited the health of my patients as much as bedside ultrasound training. »

Alexandre Lafleur, MD, MSc (Ed.), FRCPC
Spécialiste en médecine interne
CHU de Québec – CHUL
alexandre.lafleur.1@ulaval.ca

“Thank you very much for the exposure and teaching offered via the CCUS “Mini-Fellowship.”  These few days allowed me to enormously improve my mastery of bedside ultrasound in clinical decision-making in critical care. I recommend the experience to clinicians already having experience in bedside ultrasound, but who feel they could benefit from the expertise of an instructor to attain a level beyond basic courses and available textbooks.”

Mathieu Brunet, MD, GP/ER/ICU, Magdalen Islands, Quebec, Canada

“The CCUS Mini Fellowship In House training is very essential in to experience the echo skills that we get from the courses,being supervised in ICU will offer the chance to be corrected and get real live practice/exposure by being at the bedside and learn what is priority in echo for the best of patient care. The in-house experience is very helpful, practical, I recommend this training to any physician involved in ER, ICU, CCU, Anesthesia and rapid response team.”

Joe Choufani, MD, Internal Medicine/Cardiology, St-Lawrence Health Association, NY

“Thanks for everything. I really appreciate you sharing your vast fund of knowledge with me.”

Sean Sue, MD, ER, Philadelphia

CME

So, great news, finally went thru the CME process and lo and behold, the Mini-Fellowships qualify for 25 Section 2 credits (regardless of the length) and 3 hours of Section 3 credits (per day of fellowship). For you americans:

Through an agreement between the Royal College of Physicians and Surgeons of Canada and the American Medical Association, physicians may convert Royal College MOC credits to AMA PRA Category 1 Credits™., #CME

Cerebral & Somatic NIRS (Near InfraRed Spectroscopy) in shock states: tailoring therapy. (PART 1) #FOAMed, #FOAMcc

So I’d mentioned using NIRS to monitor and tailor therapy a few months ago, and promised a more in-depth discussion to come, so here we go.

For this not familiar with the technology or the concept, NIRS measures tissue saturation, predominantly venous. Hence physiologically it is akin to central/mixed venous gases, but localized. Cerebral NIRS found its foothold in the OR with carotid and cardiac surgery, but its use is now expanding. Given typical knowledge translation time of a decade, it should end up joining ETCO2 as a routine vital in monitored units, but probably not soon enough.

So in our unit at Santa Cabrini Hospital in Montreal, we’ve had this technology for about a year (the INVOS system), and have been studying its uses. In this time, three applications have stood out:

  1. Finding the “Sweet Spot” for vasopressors.
  2. Confirmation that therapeutic interventions are hemodynamically appropriate.
  3. Cardiac arrest: CPR adequacy, prognostication and detecting ROSC.

 

  1. Finding the “Sweet Spot” – I think (hope) that anyone reading this with professional interest understands that pressure does not necessarily equal perfusion.  With that in mind, adjusting vasopressors to a pressure makes little sense, and represents at best a guesstimate of perfusion, which is what we really are after. We can all agree, however, that a certain minimum pressure is required, but whether that is 65, 55 or 45 MAP no one can say for sure.  So the way I like to use it is to establish a baseline and watch the direction of the tissue saturation with vasopressor therapy. If the saturation begins to drop off, we may have reached a point at which excessive vasoconstriction is worsening tissue perfusion, and that inflexion point may represent the upper beneficial limit of the vasopressor – this may happen to be under 60 or 65 of MAP.  However, it is key to understand that this inflexion point is reflective of the current state of hemodynamics, such that a change in volume status or cardiac output, in one direction or the other, would likely change the position of this physiological point.  For example,  a volume depleted patient may reach a decreasing tissue saturation point at 55 MAP, but, once volume replete, may reach a higher MAP of 65 or above before a drop in saturation is seen.  Conversely, a patient whose best tissue saturations were around 65 MAP who suffers an MI and sudden drop in cardiac output may now see his perfusion compromised at that same MAP, which would now be achieved with a greater vasoconstriction, less cardiac output and consequently, poorer flow… I posted a case discussion which illustrates this.
  2. Confirmation that therapeutic interventions are hemodynamically appropriate – I feel this is really important. When a patient’s life is literally on the line, and knowing that our interventions are seldom without potential nefarious side effects, it is poor medicine to be introducing a therapy without having some form of monitoring – preferably multiple – that we are headed in the right direction, or at least not making things worse. Of course, we already do this – with BP, sat, lactate, CCO, ultrasound, ETCO2 – but I think using a realtime measure of tissue saturation adds to this. It is also my firm opinion that integrated, multimodality monitoring is necessary – at least until someone develops some form of mitochondrial monitoring which tells us that the cytoenergetics are sufficient to survive. Until then we are stuck with surrogate markers and many of them (e.g. lactate) are the result of complex processes that preclude them being a simple indicator of perfusion adequacy. For instance, when giving a fluid bolus/infusion – after having determined that the patient is likely fluid responsive AND tolerant – one should expect to see an increase in ETCO2 (other parameters being constant), an increase in CO, an increase in NIRS values. The absence of such response should make one reconsider the intervention, because without benefit, we are left only with side effects.

Here is a patient’s cerebral (top) and and somatic (thigh – bottom) and CO values. This patient had an RV infarct and was in shock.

IMG_7948IMG_7946

 

Following initiation of dobutamine, this is what occurred:

IMG_7951IMG_7949

Given that we cannot always predict the response to an inotrope – depending on the amount of recruitable myocardium, it is reassuring to see an improving trend. This enabled us to decrease the vasopressor dose significantly.

Note that, so far, and unless some good evidence comes out, I don’t use a goal value, and so far, I have not identified a value that is predictive of prognosis. However, downward trends usually bode very poorly. For instance, I had a severe chronic cardiomyopathy patient whose cerebral saturation was 15%!!!  But more surprisingly, she was awake, alert and hemodynamically stable. Adaptation.

Part 2 and the stuff on cardiac arrest coming soon!

Please, anyone using NIRS in shock, share your experience!

 

cheers

 

Philippe

Bedside Ultrasound & Intracavitary Thrombolysis: Using the Ajmo sign. #FOAMed, #FOAMcc, #FOAMus

So as a follow up to a recent post about intra-abdominal thrombolysis, here is a little pearl from a colleague and fellow ICU physician, Dr. Ian Ajmo.

The Ajmo sign refers to the visualization of injected contrast in a fluid cavity, used to confirm proper position of a drainage catheter in an effusion or ascites.

In the case of a separated effusion, it is often difficult to determine if the septations are truly divisive of the fluid, or just a network of membranes that remain communication and that a single catheter can drain. I have seen both cases with similar echo graphic appearance.

However, the Ajmo sign can be used to determine of the catheter is likely to drain the bulk of the collections, or if the use of thrombolytics should be considered:

 

In this case, we can see that the agitated saline fills only one of the cavities with little or no spillover into adjacent pockets of pleural fluid. This is a case where thrombolytics can be considered. Hence, this consideration can be done early using bedside ultrasound, rather than follow up CT scans (notoriously poor at seeing fine separations).

 

cheers!

Philippe

Resuscitation Leadership Academy: Check it out!

 

Screen Shot 2015-09-18 at 11.05.26 AM

Screen Shot 2015-09-18 at 11.05.11 AM

Just wanted to invite everyone to take a look at the Resuscitation Leadership Academy (www.resuscitationleadership academy), brainchild of Haney Mallemat (@criticalcarenow) and Scott Weingart (@emcrit), neither of whom need an intro at this point, needless to say.  Much thanks to them for inviting me to the faculty, very honoured to be a part of the team!

Basically the RLA offers an online curriculum packed with great material, but more importantly the opportunity to do an online hangout with any faculty member and discuss cases, topics, etc, in an informal but very informative manner. I think this is a great resource for trainees as well as those who are in practice but either lack an academic environment or really just want to tap into some of these guys’ experience and knowledge.

Looking forward to meeting some of you in a hangout!

cheers

Philippe

Musings with Jon-Emile and Philippe 4: A Podcast on Pointers, Pearls and Opinions on Tough Ventilation Cases. #FOAMcc, #FOAMed

Hi, so in this little discussion, we go over some points about ventilating ARDS, obese patients, looking for optimal PEEP and other obscure physiological point that we are somehow interested in…

 

Love to hear comments and questions!

 

 

cheers

 

 

Philippe